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PREFACE

This book contains lectures on matrices given at Princeton University at
various times sinee 1920. It was my intention to include full notes on the his-
tory of the subject, but this has proved impossible owing to eircumstances
beyond my eontrol, and I have had to content myself with very brief notes (see
Appendix I). A bibliography is given in Appendix II. In compilingsit, espe-
cially for the period of the last twenty-five years, there was considerable difficulty
in deciding whether to include certain papers which, if they had%gturred earlier,
would probably have found a place there. In the main, I have not included
articles which do not use matrices as an algebraic caleulus, ok whose interest lies
in some other part of mathematics, rather than in fh(t.ii’eory of matrices; but
consistency in this has probably not been attained¥ )

Since these lectures have been prepared over a.somewhat lengthy period of
time, they owe much to the eriticism of many ffiends. In particular, Professor
A. A, Albert and Dr. J. L. Dorroh read mestof the MS making many sugges-
tions, and the former gave material help ili;t}ie preparation of the later sections
of Chapter X. www_dbra‘u{[i&bl'ary.org.in

.,j.:;' J. H. M. WEDDERBURN,
. Princeton, N. J., X\ N
July 20, 1934, &
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CORRIGENDA

4, line 9 from top: on second = read j for p
6, Theorem 1, add: and conversely, of a matrin is commulative wilh every
other matrix, 1t is a scalar mairix.
7, line 12 from foot; for first and third A read [A|
11, lines 10, 11 from foot: for (Q'Q) read {Q'Q)— O
13, linc 9 from foot: for Sgix read Sgix p ::\t“\.
13, line 6 from foot: for g1 read 7., ,.,’;:‘3
14, hine 3 from top: before aje; read . m'\zs
18, line 8 from foot; for j read v; N\
20, line 8 from foot: for r 4 1 read r — 1\‘\\\J
30, line 13 from top: @&ﬁd%ﬁ%@liﬁmrs{zél“éiﬂ
31, line 4 from foot: for second ‘:lré‘ad xeppadd e; +ep =1
42, equation (16): for 1 read ~4{iv
54, line 14 from foot; for f‘kZ) read (13)
34, Jine 6 from foot: {Q{ (14 read {(15)
34, line 3 from fc\mt for (i3) read (16)
34, line 2 f[Qﬁ{f’oc;t for (13) read (14)
56, lme 'J\\&from top: correct term after X to vead ko sz
67, I{nes 4, 5, 6, T: the exponent n on the second fazt O sho read (O

page ‘6\8,‘ lme 11 from foot: before I read (—-1)F

page
page
page
page
page

page

68, line & from foat: before M| read (—1)*

74, line t1 from foot: for r = L read r = 3

81, line 4 from foot: for 1/8:! read 5! with similar change in last line
84, line 13 from foot: interchange i and j,

85, line & from foot: for §, read 5{?;

86, linc 7 from top: for first o1 read e;



page 92, line 11 from foot: delete from “and if"" to end of paragraph

page 101, line 6 from foot: after hermitian insert A = A’

page 103, linc 4 from foot: delete first 0; forq =t + lread g = s + 1

page 112, equation (23}: for { | read L]

page 116, line 7 from top: add Every power series converges when x is nilpotent,

page 119, line 9 from top: for “at least . . . first” read "the H.C.F. of the t's
is relatively prime tom™

‘page 122, line 4 from foot: muitiply bracket by e and delete same ideitc
page 122, equation (30} : for gy read py; = egy
page 123, lines 2 and 3 from top: for g;; read py

page 123, equations {32) and (33): for = read 2« '\
T

\._/

page 125 linc 4 from top: read a;"1(A}, a2 (M), a0
AY;
page 126, line 13 from top: for | | read | | \x o

‘o

page {26, equation (4\?\\!x{¥05b§';?ithﬁr;fl§;do?:g m
page 129, cquation (63):in first term {?}C‘B’lrs should be heavy
page 129, line § from foot: for [x| ré'ariwfx]
page 134, line 6 from top: mull\pl) right side of equation by 2
page 136, line 10 from top\q\or &read £
page 137, equation § 10&): read p = — 3.9
page 144, oqtntm\n\@i} read x'axa™
ge 156, ]me\'}}\from top: for smond = read <andadd "< A, whencc A = ZAy"
page I,G\—_e ‘hqe 8 from top: for primitive read minimal
page\M line 7 from foot: for invariant read semi-invariant
page 164, last linc: before “complete” Insert "suitably chosen”
page 166, line 10 from foot: for equivalent read invariant
page 166, line 5 from foot: {or first By read B,
page 167, Theorem 9:for j & kread 1 £ ¢

page 171, lne § from top: delete 80



CHAFPTER 1
MaTRICES AND VECTORS

1.01  Linear transformations and vectors. In a set of linear equations

1= aum + apm + -0+ Gign
’
2z = G+ Gmme A+ -+ dongs ~
7?:: = 0% + Gty + .- + Tantn '\~>
or O
-
(1) 57 = 2 aim; =12 ---, n), :

=1 AN

the quantities m, n2, - - -, %, ay be regarded as the cogrtinates of a point P in
n-space and the point P'(»1, 5, -, n,) is then gaj&\to be derived from P by
the linear homogeneous transformation (1). Orujn place of regarding the 7's as
the eoordinates of & point we may look on themi\as the compenents of a vector y
and consider (1} as defining srvopedrtiohhvBishCerkisforms ¥ into a new vector
y'. We shall be concerned here with the properties of such transformations,
sometimes considered abstractly as {:;nﬁﬁies in themselves, and sometimes in
conjunction with veetors. 4

To prevent misconceptions ag- ththelr meaning we shall now define a few terms
which are probably slready! s\mlhar to the reader. By a scalar or number we
mean an element of the ﬁe]} in which all eoefficients of transformations and
vectors are supposed (16’ 1t6; unless otherwise stated the reader may assume
that a scalar is an ordingry number real or complex.

A vector! of order#w'is defined as a set of % sealars (&, &, -+ -, &) given in a
definite order, {Fhis set, regarded as a single entity, is denoted by a single
symbol, say 2y ‘and we write

m’\’ r = (Elr’zﬁ; "'15“)»
The zca f's &, £, +--, E, are called the coordinales or components of the vector.
Ify = (m, mo, -+, na}ie also & vector, we say that z = yif, and only if, cor-
responding eoordinates are equal, thatis, &, =9, (# = 1, 2, +++, nj. The veector

z = ((hh! YTy fﬂ) = (EI+7?IIE?'+ M2y "ty En"!"?n)

is called the sum of x and ¥ and is written x + y; it is easily seen that the opera-
tion of addition so defined is eommutative and associative, and it has a unique
inverse if we agree to write 0 for the vector (0,0, - .-, 0).

1 In chapter 5 we shall find it convenient to use the name Aypernumber for the term
veetor which is then used in a more restrieted sense, which, however, does not confliet
with the use made of it here.

1



2 MATRICES AND VECTORS (I}

If pis a scalar, we shall write

pr = zxap = (951, PE@: Tty PEu)-

This is the only kind of multiplieation we shall use regularly in connection with
vectors.

1.02 Linear dependence. In this section we shall express in terms of

vectors the familiar notions of linear dependence.? If xy, x5, ---, z, are vee-
tors and i, we, - - -, @, scalars, any vector of the form

2 r=wh+ wr:+ - + wr, \

is said to be linearly dependent on x:, x3, - -, z,; and these vectm% are called

linearly independent if an equation which is reducible to the form

A

0=wtwrst - ftoz o\
can only be true when each w; = 0. Geometrically th"é} vectors determine an
r-dimensional subspace of the original n-gpace and, sy, 72, - -, z, are taken as
the coordinate axes, wy, ws, +--, wrin (2) are the'soordinates of z,

We shall cali the totality of vectors z of the,r form (2) the linear sel or subspace
(21, 22, --+, x,) and, when z, @, -, 24 aré linearly independent, they are
said to form a basis of the set. The nu'mber of elements in a basis of a get is
called the order of th¥ ¥ey;dbraulibr ary grgin

Suppose now that (z;, 2., -- '.")’ {41, 42, -+, ¥,) are bases of the same
linear set and assume 3 > r, Sjnce the z’s form a basis, each y can be expressed
in the form

{3) ¥i = Gat -+ a\m + - 4+ aiz, t=12 ---, 8
and, since the y's form a bas1s we Tnay set

G+ bagn + o F by (=12 -, 1)

=%
and therefore%'om (3)

NS

€Y \”\} ~\ Yo = aufa 2 Qs Z bithe = 2 Tkl

. 1—1 i=1 k=1 k=1

.
where ¢;, = 2 a4;b, which may also be written

i=1
(5) Cig = 2 a.-:-b?-k (ﬁ' = ]’ 2, T, S}

=1
if we agree to set a;; = O whenj > r. Since the y's are linearly independent,
(4) esn only hold true if ¢ = 1, ¢y = 0 (z # %) so that the determinant

? See for instance Bécher, Introduction to Higher Algebra, p. 34.



(1.03] LINEAR VECTOR FUNCTIONS AND MATRICES 3

{ew| = 1. But from the rule for furming the producti of two determinants it
follows from (5 that {¢i | = | aw || ba | which implies (i) that Vg | = 0 and
(ii} that r = s, since otherwise | a;; | contains the eolumn ;. + 1 each element
of whieh i3 0. The order of a set is therefore independent of the basis chosen
to represent it.

It follows readily from the theory of linear equations {or from §1‘11 below)
that, if | i [ # 0in (3}, then these equations can be solved for the z's in terms
of the ¥'s, so that the conditions established above are sufficient as well as
necessary in order that the y's shall form a basis. )

If e; depotes the vector whose 7th coordinate is 1 and whose other coordin&tes

are 0, we see immediately that we may write O\
€ N\
. (NS
T =Len+ bee + o0 A+ e « \
N
in place of z = (&, &, -+, £&). Hence e, &, - -, ¢, forih'a ‘basis of our

n-space. We shall call this the fundamental basis and the»ﬁﬁn tdual vectors e;
the fundamental unit veciors.

If i, @5, -+, x.r < n) is & basis of a subspacegforder r, we can always
find n—r vectors x, 41, -, T, such that =z, 24, %, z. is a basis of the
fundamental space. For, if z, ;1 is any vector aot lying in (o, 2, -+, 7.,

there cannot be any relation
wiwrw, d bt aul‘lhral y.org.in

wlx1+wﬂzﬂ+ +%xr+wr+1xr+l'_0
in which w, .1 = 0 (in fact every o “must be 0) and hence the order of (1,
T, vy Ee ey isr -+ 1 Slneés the order of {e;, e, - -+, ¢,}iS n, a repetition
of this process leads to a ba 8.7, To, -, T, o, T, of order % after a finite
number of steps; a suitably’ehosen ¢, may be takea for ., . ;. The (n—r)-space
{Zr w1, "7+, Tn) 18 said t\o Be complementary to {ry, xay -+, Z.); it is of course
not unigue. .\ "

&
1.03 Linear ve}tor functions and matrices. The set of linear equations
given in §1 01,. namely,

“.. n

® N W= ey (=12

Bt
define the vector ¥ = (41, ma, - -, %) a8 a linear homogeneous function of
the coordinates of ¥ = {n, s, --+, %) and in accordance with the usual func-

tional notation it is natural to write ¥ = A(y); it is usual to omit the brackets
and we therefore set in place of (6)

= Ay.

The function or operator 4 when regarded as a single entity is called a
matrix; it is completely determined, relatively to the fundamental basis, when



4 MATRICES AND VECTORS [1]

the n? numbers a;; are known, in much the same way as the vector y is deter-
mined by its coordinates. We call the ai; the coordinates of A and write

l i @z - g
G qn -+ Gon
(7) R |
Anl Ang * - &y
or, when convenient, 4 = || a;; [|. Tt should be noted that in a;; the first suffix

denotes the row in which the coordinate oceurs while the second gives the
column. '8

If B = {|by]| is & second matrix, 4" = A(By) is a veetor, Q?Hic\h is a linear
vector homogeneous funetion of y, and from (6) we have M

n n n u'(
7 = E Qip E : oy = 2 dae”}m\
p=1 p=1 4

7=

N\

where AN
i \
(8) dyj = 2 P05
‘p-T—"”l
The matrix D = Wﬂ}fﬁqﬁaﬁgﬁﬁﬁ'm%ﬁbduct of A into B and is written A B.
The form of (8) should be carefullynoted; in it each element of the #th row of 4
is multiplied into the correspg{nding element of the jth colurmn of B and the

terms so formed are added, (Since the rows and columns are not interchange-
able, AB is in genersal different from BA; for instance

'1\(}”H |l a bi | a b
&) e a = |2ate 2 + d |
’\1';\?](; b Hl 0” _la+2 bl
e dll 2 1l T e 42 di

The.gxiédﬁct defined by (8) is associative; for if ¢ = |jc;; ||, the element in
the sth fow and jth column of (AB)C is

g=1 \p=1 r=1

and the term on the right is the (4, ;) ecoordinate of A{BC).
If we add the vectors Ay and By, we get a vector whose ¢th coordinate is

(_cf- (6))
7= Z": ain; + Z“: bim; = Zl: Cishy

i=1 i=1 i=1



|1.04] SCALAR MATRICES 5

where ¢;; = 6i; + by, Hence Ay + By may be written Cy where ¢ = [ esi |l
We define C to be the sum of A and B and write ¢ = 4 + B; two matrices
are then added by adding eorresponding eoordinates just as in the ease of veo-
tors. It follows immediately from the definition of sum and product that

A+B=B+4, A+B+C=4A4+B+C0,
AB+C) = AB+ AC, (B+ C)A = BA + (4,
Az + y) = Az + Ay,

A, B, ¢ being any matrices and z, y vectors. Also, if % is a sealar and % set
y = Ay, ¥’ = ky’, then O\
r” ’ ) NS
Yy’ =Ry = kA(y) = A(ky) WO

w3
N
<

or in terms of the coordinates o\
rr
Ny = 2 Bacomi,
- A\

A~

. . s
Hence k4 may be interpreted as the matrix dérived from 4 by multiplying
each coordinate of 4 by k. PN '
On the analogy of the unit vectors e; ,vpte' now define the fundamental unil
matrices e; (i, j = 1,2, -+, njwwHomelibmtheraitrix whose coordinates are
all 0 except the one in the ith row and*sth column whose value is 1. Corre-

sponding to the form Z.e; for a veetor we then have

(9) ’\\ e Z Qisfij.

5, i=1
Also from the deﬁnit-ign};;)’f" multiplication in (8)
(10} ;"\';};;1‘3_;& = &, €iffpg = 0, (=
a set of relatjop's\which might have been made the basis of the definition of the
product of<two matrices. It should be noted that it follows from the defini
tion ofé.,\that
(11) €i€; = €y eger = 0 (.? #= k),

(12} Aeg = 2 Gi€ife = E Cirki.

Hence the coordinates of Ae; are the coordinates of A that lie in the kth column.

1.04 Scalar matrices. If % is & scalar, the matrix K defined by Ky = ky
is called a scalar matriz; from (1) it follows that, if K = [| R ||, then ks = &
(i =1,2, -, n), ki = 0 (i = j). The scalar matrix for which k = 1 is called
the identity matrix of order n; it is commonly denoted by I but, for reasons



6 MWATRICES AND VECTORS 1)
explained below, we shall here usually denote it by 1, or by 1, if it is desired
to indieate the order. When written at length we have

|1

]

1 i

1

‘\

| I

I ) ;
] —

ﬁ] J? l . ‘

I . !

I Ll | f

A convenient notation for the eoordinates of the identity matrix was intro-

duced by Kronecker: if &; is the numerical function of the integers i, j

defined by KO\
NS ¢
(13} 8 = 1, 8y =10 (= 7, O by
then 1, = |} 8,5 ||. We shall use this Kronecker delta fun{ctioﬁ in future with-
out further comment. \

FtIP OREM 1 Fvery ma!rm 18 commutarne wilhy &Qs‘calar matrix,

S\
Let k be Iahe scalar and K = [[kyl| = P\ k&w [| the corresponding matrix.
If 4 = || ay il is any matrix, then from the"deﬁmtlun of multiplication

KA w_wﬂ( @aﬁll(lgraqy orﬁz kbin; i

>

= || kay |

|
AK = i‘ > %3 I = ‘1 > kaus, l} = |l kay|
i p\'\ i [ i

so that AKX = KA. (8

If k and h are twoS¢alars and K, H the corresponding scalar matrices, then
K -+ H and KH arethe scalar matrices corresponding to k& + h and kh. Hence
the one-lo-ane.gOtrtspondence between secalars and scalar matrices is main-
tained undex:(ﬁ}e operations of additior and multiplication, that is, the two
sets are s’i‘rzip'iy isomorphic with respect to these operations. So long therefore
as wesare.concerned only with matrices of given order, there is no confusion
introdueed if we replace each scalar by ite corresponding scalar matrix, just
48 in the theory of ordinary complex numbers, (s, b} = g + bi, the set of num-
bers of the form (@, 0) iz identified with the real continuum, We shall there-
fore as a rule denote | ;|| by 1 and || &3,; 1] by k.

1.05 Powers of a matrix; adjoint matrices. Positive integral powers of
= || @i || are readily defined by induetion; thus
At = A4, A3 = 4.42,..., dr = A- A=~

With this definition it is clear that Ard+ = A~ + ¢ for any positive integers 7, s
Negative powers, however, require more careful consideration.
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[1.05] POWERS OF A MATRIX 7

Let the determinant formed from th array of coofficients of a matrix be
denoted by :
(4] = det. A

and let a,, be the cofactor of tpe In 4, 80 that from the properties of deter-
minants

(14) 2 Gipatpy = | A | 84y = Z @ty (57 =1,2, - -, ).

» »
The matrix || ay; || is called the adjoint of A and is denoted by adj A. Imthis
notation (14} may be written \

(15) A(adj 4) = | 4| = (adj 4)A, <O

g0 that a matrix and its adjoint are commutative,
If 4] 5= 0, we define 4! by 70,

A2
(186) A7 = | A~ adj A. ~?;\

Negative integral powers are then defined by A7 =NA™; evidently A4+ =
(A7)7%  We also set 4" = 1, but it will appegr’\hter that a different inter-
pretation must be given when | 4 | = 0. BincydB-B1A-1 = 4. BR—1.4-1 =

AA-Y = 1, the reciproeal of the produet 4B g '
www . dbraulibrary org.in

(AB) = By~

if A and B are matrices, the rule fon inultiplying determinants, when stated
in our notation, becomes o

|ABY = {4]|B|.

In particulaz, if AB = 1, thert (A4 |[B] = 1; henee, if | A | = 0, there is ns
matrix B such that 4B =M or BA = 1. The reader should nofice that, if k
is a scalar matrix of ord;(ﬁ n, then |k = &~
If A = 0, 4 is said’to be singuler; ifi A} = 0,1 4iis regular or non-singular,
When 4 is regu%vi—l is the only solution of AX = 1 or of X4 = 1. Tor,
lf xlX = I, thp:n
A A=t = 411 = 4~14X = X.

" \ ¥;

If AX =M, then either X = Qor A4 is singular; for, if A~ exists,
0 =414z = X,

W

- —2!
If 42 = A = 0, then A is said tobe wempotent; for example ¢;; and Hg _3 ||

are idempotent. A matrix a power of which is 0 is eallod nilpofent. If the
lowest power of 4 which is 0 is A7, ris called the index of 4; for example, if A
= €1z + em -+ ¢y, then

A2 = £13 + Bag, 4P = £14, At = 0,

so that the index of A in this case is 4.
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1.06 The transverse of a matrix. If A = [l ay|l, the matrix || a/| in
which a:,. = ay; is called the transverse® of A and is denoied by A’.  For instinte
the {ransverse of

I
| an an 6w [l_ tn Qu G |
| @y @ Qo3 | is |l ¢ dxn O |
||L Q31 Qae  Gh3a || l iz ey Gaz ;ll .

The transverse, then, is obtained by the interchange of corresponding rows and

columns. It must be carefully noted that this definition is relative to a par-

ticular set of fundamental units and, if these are altered, the lransvepse must
also be changed. R
O\

Tueorem 2. The tronsverse of a sum is the swmn of the U‘G.I?SI)GT\(’S of the sepa~

rale terms, and the transverse of @ produel. is the product ()f thé’ é,?"an‘si'f’rsc‘s of Lhe

separate faclors in the veverse order. \\

The proof of the first part of the theorem is impapdiate and is left to the
reader. To prove the second it is sufficient tpyeensider two factors. Let
A = |layll, B = [|bs]l, C = AB = Hc,-j}lﬂt’nd, as above, set aj; = a4,
b = bis, ¢4y = ¢y then

\-.r‘grw dbt@fylhbf%f}[gﬁ Z b»p .

whence M\
\\(48)’ = (" = B'4".

The proof for any nutqbﬁr of factors follows by induction.

If A = &', A iskaid to be symmetric and, if A = —A’, it is called skew-
symmetric or skew’ A scalar matrix & is q}mmeLrie and the transverse of
kA is kA’ A%-”"

&«
’o

THI:.@BEM 3. Every matriz ean be expressed uniquely as the sum of a sym-
metrac\m’d a skew mafriz.

Forifd =B+ (C,B =B, = ~C,thend’" = B+ ¢ = B — Cand
therefore

= (4 + 4%/2, C = (A — 4')/2.

Conversely 24 = (4 + 4) + (4 — A and A + A’ is symmetrie, 4 — 4’
skew.

* 1t is also called the fransposed or conjugate of 4. Tt is sometimes written 4.
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1.07 Bilinear forms. A scalar bilinear form in two variable vectors, = =
Tt ¥ = Zies, i3 a function of the form

T+

a7 Alz, 9) = D) astns
1,f=1
There is therefore & one-to-one correspondence between such forms and ma-
’t.ricesr A = | ai;|] corresponding to A(z, ¥}. The special form for which 4 =
l| 6511 = 1 is of very frequent occurrence and we shall denote it by S; it is
convenient to omit the brackets and write simply
N
(18) Szy = &om + Eme + -+ + Eun
and, because of the manner in whieh it appears in veector analys\lb} \\xe shall
call it the sealer of zy. Bince S is symmetric, Sry = Syx. A
The funetion (17) ean be conveniently expressed in termsmf‘A and §; for
we may write A(z, ) in the form \
i = 3 43 ) 2S04
i=1 i=1 < 4
It may also be writien NO
™ n
widbraulijbrary.or m
3 (2 e -Mw T
i=1 \i=t1 N
henee
(19} &Ay = Syd’z,

8o that the form (17) is una}t@red when x and ¥ arc interchanged-if at the same
time 4 is changed into ALy This gives another proof of Theorem 2. For

Sx,@:ﬁ)‘?y = SyABr = 8Bxd’y = SzB'A"Y,
which gives (AL{Z’:\ﬂ B’A’ since x and v are independent variables.
O\
1.08 ChaQéé of basis. We shall now investigate more closely the effect of
a chan\ Jim the fundamental basis on the coordinates of a vector or matrix.

If fi, foo™ -+, fv is a basis of our n-space, we have seen (§1.02) that the f°s are
linearly independent. Lef

f|'= , piig; = Peg ('3::11 2: ) '?‘i',)
(20) ;p: i

P =lpull

Since the f’s form a basis, the ¢’s are linearly expressible in terms of them, say

{21) g = E @il
71
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and, if @ = || 4y ||, this may be written
(22) e, = 2 qii 2 Prite = PQ{’.,‘ (’1 = 1, 2, oy ?’L).

i A

Hence P = 1, which is only possible if | P[ = 0, Q = P,

Conversely, if | P | # 0, § = P~ and f; = Pe; as in (20), then (22) holds
and therefore also (21), that is, the ¢'s, and therefore also any vector z, are
linearly expressible in terms of the f’s. We have therefore the following
theorem.

N

TaeoreM 4. If f: = Pe; (i = 1,2, ++-, n), the vectors f; form abasis if, and
only if, | P| = 0. \ )

If we have fewer than n vectors, say fi, f», ---, /-, we-bave scen in 1.02
that we can choose fr 1, <--, fu 50 that fi, fo, -+, f,")\?pmi a basis. Hence

TurorEM 5. If fi, fo, ---, Jv are linearly indepénient, there exists at least
one non-singular matriz P such that Pe; = f; (?:','\1‘, 2, -,

We shull now determine how the form Sxy; which was defined relatively to
the fundamental basis, is altered by a change of basis. As above let

(28) fi=Pei, o TPTURETE w0, =12 .0

be & basis and

T = Bee b,y = Zne = Inif;

variable veetors; then fl;c-}}\(%)

z = QBLS; = PZiie, v = Qnf; = Poyle

A,
and ~C

O Stle=Ple=Qr, Il = Qu.
Let us s:eg’géfnporaﬁly S.xry for Szy and also put Szy = Zt/y,, the correspond-
ing @h}'“ﬁdth reference to the new basis; then
Srzy = SQxQy = S.2Q'Qy
S.zy = 8;PxPy.
Consider now & matrix 4 = || a;; || defined relatively to the fundamental

basis and let 4: be the matrix which has the same coordinates when expressed

in terms of the new basis as A has in the old. From the definition of 4 and
from £ = S.e;z we have

dz = 2 aite; = 2 aieiS.en

Ve LI

(24)
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and hence
Az = Zagk fi = ZaufiSfir = 2auQ 68,05 Qr
= 7 ZaeS.e,Qr = Q-LAQx.

We have therefore, remembering that @ = P,

(25)

‘Tumorsm 6. If fi = Pe; (2 = 1,2, -+, n} is a basis and 4 any matriz, the
matriz PAP™! has the same coordinates when expressed in terms of this basis as 4
has tn terms of the fundamental basis,

The matrix ¢—14Q is said to be stmilar to 4 and to be the tmngjorm\ of A
by @. Obviously the transform of a produet (sum) is the produet/fsum} of
the transforms of the mdlwdual factors (terms) with the order unhltered For
instance Q—'ABQ = Q1AQ-Q~1BQ. T |

Theorem & gives the transformation of the matric unl,ts. eu defined in §1.03
which corresponds to the wvector transformation (23)s tkhe result is that, if fi;
is the unit in the new system corresponding to ey, t}len

Jiq = Peiip_l“’\:l.\

S J

which is readily verified by setting O\
A =g = eiSz.sm(w.&saga{cf%xra?ﬁmgjﬁ'ssffs( )

in (25). The effect of the changes ﬁf’Basis on the form of the transverse is
found as follows. Let A* be defined by

O Syxdy = Syd*a;

then L\
SyA*r = S;xAy S,Q:BQAy = 8.2Q'QAy = S.Qy(Q)A'QQ=
\ = Sy(Q'QA'Qx.
Hence “\
(26) O A% = (Q4A'QQ.

™
e

: .\' ) . .
1,09 {Reciprocal and orthogona! bases. With the same notation as In the
previo\us section we have S f.f; = 0 (f # ), Sifif; = 1. Hence

8 = Sififs = SQfQf; = 8.fQUs

If, therefore, we set

@7) £=906 G=12
we have, on omitting the subscript e in S,,

(28) Sffi =8y Gi=12 -, 0.

Since | Q'Q | ¢ 0, the veetors f1, f3, +++, f, form a basis whieh we say is recip-

rocal to fi, fo, -+, fo. This deﬁmtion is of course relative to the fundamental
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basis since it depends on the function S but, apart from this the basis (f ) is
uniquely defined when the basis (f)) is given since the vectors f; determine P
and @ = P-1,

The relation between (f} and (f,) is a reciprocal one: for

Ji = Q0fi = QQPe; = Q'e;

and, if B = ()7, we have f; = R'Rf’.

If only the set (fy, fo, -+, f+) is supposed given originally, and this set of
linearly independent vectors is extended by f, .1, ---, fu to form a basis of

the n-space, then f7 .., -, f. individually depend on the choicéNof Iia,
o0y foo But (28) shows that, if Sfix = 0 (i = 1,2, - o, 1), themr belungy to

the linear st (f, .1, ---, f7); hence this linear set is unigurely’idetermined
although the individual members of its basis are not. We maytherefore with-
out ambiguity call § = {(f] ;1, ---, f.} reciprocal to BBy, Loy 1

&' is then the set of all vectors 2 for which Szy = 0 “:Qariever ¥ belongs to §.
In a later chapter we shall require the following Jé¥ama.

Lesma 1 If (fy, fo, o0, £} and (f) 41, -;s;\}f:) are reciprocal, so also are
(B, B=Ys, -+, B7Y,) and (B'f. ., Bf. ‘”} -y BYFL) where B is any non-
singular matriz. )

For SBf(B~Y; = SfiBB~'f; = Sfify 2 5,;.

Reciprocal bases hav‘é"ﬁ“&ﬂﬁﬁaﬁ&?ﬁ@‘&iﬁgﬁﬁt-h reciprocal or inverse matrices
in terms of which they might have-been defined, If P is non-singular and [,
= f; as above, then P = Ef,-SQ{ ) and, if @ = Ze;Sf7( ), then

PQ = BN ifSel ) = ZoueSel ) = |
so that Q = P—L. O

It QY =1, the bases’(f;) and (f;) are identical and Sfufy = & for all 4 and §;

the basis is then g8t to be orthogonal as is also the matrix ). The inverse of

an orthogonalu{’@bﬁx and the produet of two or more orthogonal matrices ure
orthogonal; fér}if RR’ = 1,

o) (RQ)(RQ)Y = RQQ'R’ = RR' = 1.

@\ ¥

Sup dse that hi, k3, ++-, h, are real vectors which are linearly independent
and for which Shih; = 6 (i = 7); since h, is real, we have Shih, = 0. If r < r,
we can always find a real vector # which is not in the linear set (hy, ++-, he)
and, if we put

}E,+1 =X - 2 h.‘Sh,‘.thk.‘h.‘,
1

them i, | = 0 and Shih, 1, = 0 (G = 1,2, ---, r). Hence we can extend the
original set to form a basis of the fundamental n-space. If we set f, =
R/ (Shih)}, then Sfif; = 8 even when 7 = J; this modified basis is ealled an
orthogonal basis of the set.
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If the vectors k; are not necessarily real, it is not evident that = can be chosen
so that Sk, yihe s 54 0 when Shh; >0 ({ = 1,2, -++, 7). This may be
shown as follows, In the first place we cannot have Syh, ., = 0 for every y,
and hence Sh, 4k, 41 > 0 when r = #n — 1. Buppose now that for every
choice of & we have Sh; ;. :h- 11 = 0; we can then choosc a basis &, 4, -+, 2
supplementary to Ay, ---, k, sach that Shk; = 0 (¢ = 7 + 1, -+, ) and
Shihy = 0 G =r + 1, -, m 5 =1,2 ---, 7). Since we cannot have
Sk 4 3hs = 0 for every h; of the basis of the n-space, this scalar must be differ-
ent from O for some value of ¢ > r,say r + k. If wethenput k, ., = %, 4
+ k. .5 in place of b 11, we have Shih, L1 =0 (i = 1,2, -, ») as Before
and also .

oA\
Sk, pihy w1 = She s ihr 1+ She g ghe o5 + 2Shr+lhr B
= 28h;+1}1r+}#0 (’.‘.
We ean therefore extend the basis in the manner mdlcatéd for real vectors
even when the vectors are complex.

When complex coordinates are in guestion the, following lemma is useful;
it contains the case discussed above when the vec"\t.xtjrs used are real.

Levmwva 2. When a near set of order r 1s, gwen, it 15 always possible to choose
a basis ¢, gz, 0, g. of the quMHT@#Q?&FE&*Q&ﬁ Wat g1, -, g, is a basts
of the given sel and such that Sg.§; = 5;; \iohere §; 1s the vector whose coordinates
are the conjupates of the coordinates of g; when cxpressed in terms of the funda-

2

mental basis, RS

{

"The proof is a slight modi a{i{)n of the one already given for the real case,
Suppose that g, ---, ¢, Axe chosen so that Spg; = 8 (5,7 = 1, 2, -+, )
and such that (g, --,{gs) lies in the given set when s < 7 and when s > 7,
then ¢, ---, g- 18 a\@agls of this set. We now put

0 M
:"\ g, +1 = % = E g:8g:2/87:9:
P v
which ds\mgot 0 provided  is not in {g, -+, g.) and, if s < 7, will lie in the
given sel! provided x does. We may then put

Gos1 = Go + /(8gs 41+ 0}

and the lemma follows readily by i_nduction.
If U7 is the matrix Te.Sgs, then U7 = Ze;5¢; and

(29) U= 1

Such a matrix is called a unifary matrix and the basis g1, g, <<+, g» Is called 2
unitary basis. A reul unitary matrix is of eourse orthogonal.
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1.10 The rank of a matriz. Let A = [[ay;|| be a matrix and set (ef. (12)
§1.03)

hi = Aes = ajie;;
then, if
x = Ztie; = ZeSex
is any veetor, we have
Az = AZeSeix = ZAeSex

or O
= O\

(30) Az = E k:Sez, AN
1 \

7NN
<

2 a.Sbir, where @i4-b; are constant vec-
1 \/

tors, is a linear homogeneous vector function of 23 Here (30) shows that it

is never necessary to take m > =, but it is péme€times convenient to do so.

When we are interested mainly in the mat;i}tx\&nd not in z, we may write 4

= Za;8bi( ) or, omitting the brackets, mekely

Any expression of the form Az

(31) o dbraulibaEy BB,
1t follows readily from the definitign of the transverse that
(32) A7 = zhiSas,

)

No matter what vector'z is, Az, being equal to Za:Sh.x. is linearly dependent
on G, Gy, -+, Gw oOf, if $he form (30) is used, on ky, ks, -+ -, ka. When | A|
# 0, we have seen in¢Theorem 4 that the k’s are linearly independent but, if 4
is singular, therejyare linear relations connecting them, snd the order of the
linear set (apdgy) ¥+ ¢, @) i less than n.

Suppose éﬁ%l) that the 4's are not linearly independent, say

N Qe = ayth + s + oo oy 100y

then\oﬁ substituting this value of 4, in (31) we have

A = oS0+ oub) + oo+ ay18Bs 1+ eu_ b + D aiSh,
at+1
an expression similar to (31) but baving at least one term less, A similar
reduction ¢an be carried out if the b’s are not linearly independent. After a
finite number of repetiticnus of this process we shall finally reach a form

(33) A= D7 eSd;
1



in which &, &, -+, ¢, are linearly independent and also di, dy, -, d,. The
integer r is called the rank of 4.

It is clear that the value of r is independent. of the manner in whieh the
reduction to the form (33) is carried out since it is the order of the linear set
(der, A&y, --+, de,). We shall, however, give a proof of this which inei-
dently yields some important information regarding the nature of 4.

Suppose that by any method we have arrived at two forms of 4

N
A = 2 ¢Sd; = Z/ i8¢,

1 1 "\
where (e, ¢, +-, ¢.) and (di, dy, ---, 4,) are spaces of order 7 and\(p, e,
<y pady (g gy "',!Qs) spaces of order s, and let (¢, , ., ¢/ 2 ANCD), e,
{gs +1 9o 432 5 ¢.) be the corresponding reciprocal spaces.\ Then

L 3

AQ; = 2 PLSQ.?Q:- = Py (j = 1, 2 3«{\"&)
T )

and also Ag; = Z :Sdig;. Hence each p; lies inew ¢z, -+, ¢,). Similarly
each ¢; lies In (py, Py, -+, p.) so that these twoSubspaces are the same and,
in partieular, their orders are equal, that is, re=Ns.  The same disenssion with
A’ in place of A shows that {Gisblays dbrpdibedid bpg e, - - -, ¢.) are the same,
We shall call the spaces & = (a1, ¢, N ), O, = (d, dy, -, d,) the left
and right grounds of A, and the total apace ® = (e, =+, ¢y, dy, +--, d,) will
be called the (total) ground of 4, . ™

If z is any vector in the subspaee N, = (d 11, d/ 44, -, d.) reciprocal
to &,, then 4z = 0 since Sd.{;ﬁ\‘ = 0 (¢ # 7). Conversely, if

(N0 = Az = T e;Sda,

each multiplier Sd,z mudtbe 0 since the ¢'s are linearly independent; hence every
solution of dx = Q]}e"s in M,. Similarly every solution of A’z = 0 lies in
Ry = (er 41, 60 20+, €).  We call @, and %, the right and left nullspaces
of 4; their ordér,'n — r, is called the nullity of A.

We may :sqﬁﬁnarize these results as follows,

xR r

THEm;m; 7. If o malriv A is expressed in the form 2 ai8b;, where ©

1
= (@, @z, -+, a) and &, = (by, by, -+, b,) define spaces of order r, then, no
matter how the reduction to this form is carried out,the spaces &, and &, are always
the same. Further, i W and N, are the spaces of order n — v reciprocal .to &
and ®,, respectively, every solution of Az = 0 lies in N. and every solulion of
A’z =0 in . .

The following theorem is readily deduced from Theorem 7 and its proof is
left to the reader.
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TuworzM 8. If A, B are matrices of rank r, s, the rank of A + B is not
greater than v + s and the rank of AB is not greater than the smaller of r and s,

111 Linear dependence. The definition of the rank of a matrix in the
preceding section was made in terms of the linear dependence of vectors associ-
ated with the matrix. In thig section we consider briefly the theory of linear
dependence introducing ineidentally a notation which we shall require later.

Let z; = 2 tie; (1 =1,2, < n) be a set of r vectors. From the
i=1
rectangular array of their coordinates ~
1 f - b O\
fn fn oo+ fom O
{34) N\
LY
Erl Er? e Ern \ 9

there can be formed »n!/r!(n — r)! different determinanits of order 7 by choosing
r columns out of (34), these columns being taker in their natural order. If
these determinants are arranged in some dgfimite order, we may regard them
a8 the coordinates of a vector in space of? «order nl/rli(n — r)! and, when this
is done, we shall denoté"ﬁlﬂé’lﬁéé'blb‘ia%m‘g In

(35) | N x|

and call it a pure vector of grngf It {ollows from tliis definition that | zixy
- z, | has many of the p}ip\értles of a determinant; its sign is changed if two
z’g are interchanged, it xa shes when two x’s are equal and, if A and u are

scalars, @

(36) | O\zl + #x.l}\xz e xr.l = R]xlxg et $r| + u [37;3:2 xr[-
If we rep]ace\\the z’s in (35) hy r different units e;, ¢, - - -, €, the result is

clearly not 0 we thus obtain (}) vectors which we shall eall 1he fundamental
unit vegi:ers of grade r; and any linear combination of these units, say

Vv % b .

is called a vector of grade ». It should be noticed that not every vector is a
pure vector except when r equals 1 or n.
If we replace z; by Z £ie; in (35), we get

M ‘r|e‘£le|‘2 U e"r1!

|zae «++ 2] = 2 bpbe, oo+ b lenen oo €],

where the summation extends over all permutations 4y, §z, - -, jr0f 1,2, -+, 0
taken r at a time. This summation may he effected by grouping together the

4 If it bad been advisable to use here the indeterminate product of Grassmann, (35)
would appear as 2 determinant in much the ordinary sense {cf. §5.09).
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sets f1, f2, *°, J» which are permutations of the same eombination Ty, gy o0y tey
whose members may be taken to be arranged in natural order, and then sume

ming these partial sums over all possible combinations 4, 4. -, 4. Taking
the first step only we have
z Elf'ézﬁ e E""J' | Enly =0 Ejr | =2 a:} :: El.ﬁ T Erfr | |2 P |

where 83,71 7 is the sign corresponding to the permutations (31123 i) and this
equals | £ v &l e -0 e |. Wa have therefore

&
37 |22 x| = Z/ Phidan oo o leas, <o er £\

()

€\.*
where the asterisk on I indicates that the sum is taken over all r—con@m}ﬁons
of 1, 2, ---, n cach combination being arranged in natural order,
N

THEOREM 9 oz - x| = O 1f, and only of, z1, o, "-'\3;'.':5, are bnearly
dependent. QO

The first, part of this theorem is an immediate consegiienice of (36). To prove
the converse it is sufficlent to show that, if |z, &%z, ] # 0, then there

S 3

exist scalars ai, @y, - -, a,—1such that PN

T, = oy @‘!\&égzptﬁuub‘{‘?l‘:y‘%I;-g'—”}lxr -

Let z; = Z £ Sineeirz - - x{_l f # 0, at least one of its coordinates
is not 0, and?for convenience W@E“‘I‘ﬁ;i-y suppose without loss of generality that
3%) PSS
Binee {axry -- .| = {],\-a.xlhts coordinates equal 0 and in particular

| Enka “\\fr—l roidnl =0 (=12 < n)

If we expand t-hi&{}e‘%erminant according to the elements of its last colurm,
we get a relation of the form
’0\’0

w\\ 4 ﬁlzn + ,82211' + e + Bréf -1,i = 0
wherc the 8s are independent of 7 and B # 0 by (38). Hence we may write
(39) b =abu+ -0 Far_1bo1 (t=12 -- n)

the o’s being independent of 7. Multiplying (38) by e apd summing with
regard to 7, we have ‘

=l + o tar—a®e—y

which proves the theorem. ’
If (a1, @, -+, a,) is a linear set of order 7, then some set of ’ as t.'orm 2
basis, that is, are linearly independent while each of the other a's is linearly
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dependent on them. By a change of notation, if necessary, we may take
fy, @, '+, 8- 85 this basis and write

(40) Goi= D Bty G=12 -, m—r1.
i=1

We shall now discuss the general form of all linear relations among the a’s in
terms of the special relations (40); and in doing so we may assume the order
of the space to be equal to or greater than m since we may consider any given
space &8 a subspace of one of arbifrarily higher dimensionality.

Let Q.

i AN
(41) > v =0 N
1

be & relation connecting the a's and set

= 20
1 ’\\'

%4
W

Then {40), considered as a special case of (f!;k):,*\(torresponds to setting for ¢

{42) 0 = — \rﬁ{?@fdbreul_{_b‘l;ar.x.ﬁr%@n: 1,2, -, m—71);

i=1 ™
:

and there is clearly no linear rglatibn connecting these vectors so that they
define a linear set of order m ~\v. Using (40} in {41} we have

T L Sl
Z vi+ E ‘Yr+;5sf) 8 =
N im1

and, since a,, ag,"\{;\-", a, are linearly independent, we have

\\“' m—r
,‘:’. jn_zﬂﬁ‘h‘ﬁ-" (j=1:2: B ‘.'")
o"\:'\:' £=1
when’he“
(43) c = Z?;’e:_“27r+i26.;€,+2'¥r+&r+i—E’Y‘-+\C|,
]l i=1 =] =1

8 that ¢ is linearly dependent on ¢y, ¢z, -+, em - .. Conversely, on retracing
these steps in the reverse order we see that, if ¢ is linearly dependent on these
veetors, so that v, 4+ : (£ = 1, 2, -+-; m — r) are known, then from (43) the

m
vi(j=1,2, -+, r} are defined in such a way that ¢ = 2 vse; and 2 Ny =
' 1

0. We have therefore the following theorem.
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TreoreM 10. If ay, @ < -, @a 75 a linear set of order r. there exist m ~ r

Linear relations E vig; = 0 (@ = 1,2 -+, m ~ 1) such that (i) the vectors

i=l

2 yije; ore linearly independent and (4) if Z y,6; = 0 4s any linear relation

i=1
connecting the a's, and if ¢ = Z ve;, then ¢ belongs to the Linear set (o, cs
_ r)- H 3

This result can be translated immediately in terms concerning the solution
of a system of ordinary linear equations or in terms of matrices. I q; = 2‘?;,-,.3‘.,
then (41} may be written e \'.

awyt + auv2 4 0+ Gwym = 0 e
@) e \

...............................

25T 51 + GonYe + + amn'fm b ‘U’

a system of linear homogeneous equations in th& tinknowns Yo Yottty Yme
Hence (44) has solutions for which some i ;ﬁ ’Q\lf and only if, the rank » of
the array

an Wwa\-;'\’;‘d[){? gl'i t&;;ry org.in

a Ggg:.' . o+ s
(45) A

\\din dzn *** Onmg

is less then s and, when %this condition is satisfied, every sclution is linearly
dependent on the seét of m — r solutions given by (42) which are found by
the method glven\gn\the discussion of Theorem 9.

Again, if weQmake (45) & square array by the introduction of columns or
rows of zerag,and set 4 = || ay ||, ¢ = = v, then (41) becomes A'e = 0 and
Theorsmy 10" may therefore be interpreted as giving the properties of the null-
Bpare‘gf W’ which were derived in §1.10.



CHAPTER 11
ALGEBRAIC OPERATIONS WITH MATRICES. THE CHARACTERISTIC EQUATION

2.01 Identities. The following elementary considerations enable us to carry
over a number of results of ordinary scalar algebra into the algebra of matrices,
Suppose f(A, Az, +- -, A, g0y, Ay, -+ -, A;) are integral algebraic fu.Qctions of
the sealar variables A¢ with sealar coefficients, and suppose that

23 ‘\
f(xll Aﬂ; Tty Ar) = ﬂQh l1!‘1 Tty lr) 2N\ N
Is an algebraic identity; then, when f(A, - -+, A,) — g(?\;(,~.';-"-\‘-, A.) is reduced

to the standard form of a polynomial, the coefficients ofythe’various powers of
the X's are zero. In carrying out this reduction nmpr?)perties of the X's are
used other than those which state that they obey Hielaws of scalar multipliea-
tion and addition: if then we replace A, A, A by commutative matrices
i, %3, **, &, the reduction to the form 0 is#tiHl valid step by step and hence

flay 2y -y 2) = .Q{fi?i;' Ty vy o)
An elementary examp]se_dﬁrtéﬁhﬁse}r}i:’cﬁ}g.in
(1= % (1 - D+ )
or, when zy = yz, :
’\@":“—. v'=(— i+

Here, if ry 7 yz, the véader should notice that the analogue of the algebraic
identity becomes K¢ AN

OY 2-p=sl+y) — @+ ny
which may:{;l?o be written 22 — 32 = (z — )@z + o) + (yz — xy).

O
2.02( Matric polynomials in a scalar variable. By a matric polynomial in s
sealar'variable N is meant & matrix that ean be expressed in the form

(1) PQ) = p +pM+ 4 oo b p (p, 5 0),

where po, py, .. ., p, aTe constant matrices, The coordinates of P()\) are scalar
polynomials in X and bence, if

(2} QO = g + gh=t + . 4y, (g > 0)

13 also a matrie polynomial, P(A) = Q(0) if, and only if, r = g and the coefficients
of corresponding powers of X are equal, that is, p, = =12 ..., If

| ¢ | # 0, the degree of the product PQO)QMN) (or GAYP(N)) is exactly » + ssince
the coefficient of the highest power A™+* which oceurs in the product is pygs
20
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{or g;p,) which cannet be 0 if p, % 0 and o] > 0. If, however, both | p,) and

| 4 | are 0, the degree of the product may well be less than 7 + s, asisseen from
the examples

(eoX + 1) (e + 1} = enemht 4 (1 + ex)h + 1 = (ew + ez + 1
‘| Al

H

a1 = 0.

| 1 —1
| ~ A A
Another noteworthy difference between matric and sealar polynomials is that,

when the determinant of a matrie polynomial is & constant different from 0, its
inverse is also a matrie polynomial: for instance \

(exh + D)7 = —ed + 1, e
[(en + ex)h + 171 = €N — (e + ex)) + 1. X O
We shall eali such polynornials elementary polynomials. R N\

2.03 The division transformation. The greater partvof the theory of the
division transformation can be extended from ordinary ‘algebra to the algebra
of matrices; the main precaution that must be AKen is that it must not be
assumed that every element of the algebra hag'an inverse and that due allow-
ance must be made for the peculiarities introdiiced by the lack of commuta-
tivity in multiplication. www.dbraulibrary.org.in

TueoreM 1. If P(A) and Q) arg the polynomials defined by (1) and (2),
and if |qo| = 0, there exist unsgie polynomials S(\), ROV, Si(A), Rilr), of
which S qnd 8; if not zere, are:,g?‘Jﬁ\degree r — & and the degrees of R and R, are
s — 1 at most, such that _ "N

P} = 800 4 RO = QRSN + By

If r < g, we may t&ke Si =8 =0and B, = B = P;in so far ag the existence
of these polynomials’is concerned the theorem is therefore true in this case.
We shall now &ssume as a basis for a proof by induction that the theorem is

true for pplé?nbmia.]s of degree less than r and that r < s. Since [ g | # 0,
%" exiets'and, as in ordinary scalar division, we have

PN — pogo~ — Q) = (pr — poge'gdN ~1 + -+ = P:i(d).
Since the degree of P, is less than r, we have by hypothesis Py = P.00Q%)
4+ R()\), the degrees of P, and R being less, respectively, than » — s and s;
hence

PO = (oo~ —* £+ PANQA) + RR) = SMQK) + EQ)

as required by the thecrem. The existence of the right kand quotient and

remainder follows in the same way. . ‘
It reraains to prove the uniqueness of 8 and E. Suppose, if possible, that
P=2S8Q + R = TQ + U where R and S are as above and T, U are poly-
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nomials the degree of U being less than s; then (8 — 7@ = — R I
8§ —~ T = 0, then, since | go | ¥ 0, the degree of the polynomial (S - I is
at least as great as that of @ and is therefore greater than the degree of U — R,
It follows immediately that § — T = 0, and hence also ' — R = 0; which
completes the proof of the theorem.

If Q is a sealar polynomial, that is, if its coefficients ¢ are scalars, then § = 8,
R = R,; and, if the division is exact, then @Q(A) is a factor of each of the coordi-
nates of P{\}.

Turorem 2. If the mairic polynomial (1) is divided on the right by )\ - a,
the remainder s
pot” + pan A - O\

and, 1f it is divided on the left, the remainder is . \

ape+ o "'p+ -0+ e ‘ R

As in ordinary algebra the proof follows immediabely"g\rc;m the identity
M- = (n -a()\"1+)\"2a+\.- +a -1

in which the order of the factors is immaterial s\nce A is a scalar.
If P()} is a sealar polynomlal the r;ght anrl Jeft remainders are the same and
are conveniently dencted by P
2 (}4 Theorem 1 of th ""ﬁ?%%leaamg sec]’-f:}/e?; %orids true as regards the existence
8, 8, R, Ry, and the degree cuf RNR, even when {go] = 0 provided | Q(3) ]
3

# (. Buppose the rank of 90{&%\3 <. n; then by §1.10 it has the form Z &S84
: K™
or, say, h(z e,-,-)k where'h and k are non-singular matrices for which ke; = ay,

1 NS
O .

.'\u
Kei= 8 (=137, 1), Mo = D ey then
%" i+1

3) N Qi = (e + DEQ

O

&

is a pbi}h&mial whose degree is not higher than the degree s of Q since ok g
= () so that the term in A* +!is abgent. Now, if y = [A?], then

Pl =Tled +THA Q] = A+ 2 ~%]Ql

so that the degree of | €1 | is greater than that of | @ | by n — ¢.  If the leading
coefficient, of @, is singular, this process may be repeated, and so on, giving
€1, &y, ---, where the degree of | Q;] is greater than that of |[Q; _;|. Buf
the degree of each @ is less than or equal to s and the degree of the determinant
of a polynomial of the sth degree cannot exceed ns. Hence at some stage the
leading coeflicient. of, say, Q; is not singular and, from the law of formation (3)
of the successive s, we have Q,(\) = H(\QM), where H()\) is a matric
polynomial.
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By Theorem 1, @; taking the piace of Q, we can find S$* and R, the latter of
degree s — 1 at most, such that

PQ) = S*NHMQM) + RO = S(0Q0) + R().

The theorem is therefore true even if [¢;| = 0 except that the quotient and
remainder arg not neeessarily unique and the degree of S may be greater than
r — s, as is shown by taking P = A? ~ 1, @ = e.h 4+ 1, when we have

P o= (ea)? + euh — DNQ = (oA -+ eh — 1 + €)@ — €12
2.05 The characteristic equation. If z is a matrix, the sealar polynomial
@ = —al = tarit ot (O

'\
is called the characteristic function corresponding to z. We have dlready seen
(§1.05 (15)) that the product of a matrix and its adjoint ‘equals its deter-
minant; hence ¢4

N\
AN—xadj(A —z) = |x—z| =d&).

1t follows that the polynomial f(A} is exactly divisible by A — z so that by
the remainder theorem (§2.03, Theorem 2) AN

(5) f(z) =0, O

 www. dbraulibrary. 1'§.1nﬁ|
As a simple example of this we may take ¢ = ] v 5

FO) = O — a)h — 8) = By = A — (e + O + ab - B,

and AN
_|la? 4 By o8 + 8XM
f(x)_|7a+r57 731%% (@ +9)

The following thegréﬁi is an important extension of this result.

. Here

B
8

a 1 ¢
-l 8]0

¢ '\ -
Tuzorem 38 TPFON) = | A — 2| and 6(\) is the highest commen factor of the
Srst minors‘oﬂ —zl,and if
® oY o)) = F/80),

N

the leadling coefiicient of B(N) being 1 (and therefore also that of ¢(N)); then

@) ofz) = 0; )

(i) +f $(\) i any scalar polynomial such that v(z) = 0, then o(\) isa facftm'
of ¥(\), that is, (M) is the scalar polynomial of lowest degree and with leading
coeffictent 1 such that ¢{z) = 0;

Gii) every root of f(A) 1s o rvot of ¢(A).

The coordinates of adj{(r — ) are the fira minors of I» — z | and therefore
by hypothesis [adj(» — x)I/6(\) is integral; also

sdih = 2) o _ o _ I _ e,
hence p{x) = 0 by the remajnder theorem.
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If ¢(7) is any scalar polynomial for which ¢(z) = 0, we can find scalar poly-
nomials M(\), N(3) such that M(A\e(A) + NQWO) = {(A), where ¢(A) is the
highest common factor of ¢ and . Substituting z for A in this scalar identity
and using ¢(z) = 0 = ¥(z) we have {{(z) = 0; if, therefore, ¥(z) = 0 is a scalar
equation of lowest degree satisfied by x, we must have ¢(A) = {()), apart from
a constant factor, so that ¢(\) is a factor of ¢(A), say

@ (V) = AN

Since ¢(z) = 0, A — z is a factor of ¢(3), say y(3) = (A — z)g(\), wheregisa
matric polynomial; hence

L I IS N S
Hence \ O
1) adith = 2

gl = BOURVIN — ) BOOR(NN

and this cannot be integral wnless A(A) is a const@t in view of the fact that
#(\) is the highest common factor of the coordinates of adj(x — z); it follows
that ¢(\) differs from ¢{)\) by at most a congtant factor.

A repetition of the first part of this arguméﬁt shows that, if ¢(z) = 01is any
scalar equation satisfiedhy dbtheabixy AR Factor of Y(A).

It remains to show that every root.0f¥(d) is a root of ¢(A). If A; is any root
of f(A) = | A — x|, then from (M= g(A)(A — z} we bave

‘PQ'O = gh) (M — 2)

g0 that the determinant, [o@)]”, of the scalar matrix o(\;) equals [ g(A) | [M—z |,
which vanishes since | M(% 2| = f(A). This is only possible if ¢(A) = 0, that
is, if every root of fR)is also a root of ¢(}}.

The roots of f@) are also called the roots! of x, ¢(\) iz called the reduced
characteristic fn@éﬂén of z, and (z) = 0 the reduced eguation of x.

2.06 A’fgiq"simple results are conveniently given at this point although they
are fg‘\?hé most part merely particular cases of later theorems. If g(}) is a
scalarMolynomial, then on dividing by #(A), whose degree we shall denote
by », we may set g{d) = (M)A} + r(3), where ¢ and r are polynomials the
degree of r being less than ». Replacing A by x in this identity and remembering
that ¢(z) = 0, we have® g{z) = »(z), that is, any polynomial can be replaced
by an equivalent polynomial of degree less than v,

1 They are also called the latent roots of x.

% If g(A) ig & matric polynomial whose coefficients are not all commutative with z, the
meaning of g(z} is ambiguous; for instance, x may be placed on the right of the coeflicients,
or it may be put on the left. For such a polynbmial we can say in general that it can be
replaced by an equal polynomial in which ao power of = higher than the (» — 1)th cecurs.
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If g(d) is a scalar polynomial which is 2 factor of ¢()), say e\ = h(Ng()),
then 0 = ¥(z) = hlz)glz). It follows that | y(z) { = 0;for i this were not so,
we should have A{x) = [g(z)~'w(z) = 0, whereas # can satisfy no scalar equa-
tion of lower degree than ¢. Hence, if g(A) is a scalar polynomial which has a
factor in common with ¢(z), then ¢(z) is singular.

If a scalar peolynomial g(\) has no factor in common with @{\), there exist
sealar polynomials (), N(A) such that M(A)g(x) + N(MeM = 1, Hence
Mx)g(z) = 1, or [gla)l = M(z). It follows immediately that any finite
rational function of x with scalar coefficients can be expressed 8¢ a scalar
polynomial in z of degree v — 1 at most. It should be noticed carefullys how-
ever that, if z is a variable matrix, the coefficients of the reduced polynomial
will in general contain the variable coordinates of z and will nq't\be integral
in these unless the original funection is integral. It follows gﬂéo that g{z) is
singular only when g(A) has a factor in common with (3}, ™

Finally we may notice here that similar matrices hav6 the same reduced
equation: for, if g is a scalar polynomial, glyzy) = 3&{r)y. As a particular
case of this we have that zy and yz have the same Qeduced equation if, say, ¥ is
non-singular; for zy = y~-yz-y. If both z and ¢are singular, it can be shown?®
that zy and yz have the same characteristie ,e’q\uation, but not necessarity the
same reduced equation as is seen from the{éxample & = ew, ¥ = én.

www.dbraulibrary.org.n
2.07 Matrices with distinct roots,%Because of its importance and com-
parative simplicity we shall investigaté the form of a matrix all of whose roots
are different before considering“the general case. Let

(8} fO) = A T”\i‘-.l’= O O Lt B g Y
where no two roots aresegual and set

R O 00 & L I P B e LI (N YA i 0
) fily = ()\‘\7\7\1) R N TS TE Ve ) B P T ¥ X — A

N\ SN
By the La‘g{‘a’}lge interpolation formula Z/f,-(h} = 1; hence

a0y 1) 4 Hl) e F R = L

Further, f(A) is a factor of fi(\)f;(A} ({ # j) so that

(11) Jixifim) =0 @

hence multiptving (10) by fi(x) and using (11) we have

(12) [fzx)]? = fulx).

Again, (\ — M\ = FOU/7(A); hence (x — Xafile) = 0, that ig,
(13) afdz}y = Mfilz),

* For example, by replacing y by 4 + & & being o sealar, and considering the limiting
case when & approaches {.
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whenee, summing with regard to ¢ and nsing (10], we have
(14) x = Nle) + afled + o A Afulah

If we form 2" from (14), r being a positive integer, it is immediately seen {rom
{11} and (12}, or from the Lagrange interpolation formula, that

(15) p= MO F NS e NS

where fi stands for fi{x), and it is easily verified by actual multiplieation that,
if no root is 0
_ N\
z! 2)\1‘f1+7\'z_]f2+ ot +An1fr;
AN
go that (13) holds for negative powers also. The matrices f; are Lin\éarly inde-
pendent.  Yor if Zy,fi = 0, then hy

N

l":
<

0=fZy.fi = 'Y;'f?‘ = v;f; '\

AN

N
whence every v; = 0 seeing that in the case we are evssidering f(A) is itself
the reduced characteristie function so that fi(x) = 0>

From these results we have that, if g(\) is zmyﬁca ar rational funetion whose
denominator has no fuetor in common with w()\) then

(16) glz} = g £ g0y + -+ g
WOW dbrauhbl "ary ‘or
1t follows from this that the roots off g(r) are gih) (= 1,2, ---, n). TFor

setting ¥ = g{x), e = g(As), we havedus above

&t‘y) = Zy(ufs,

¢Y{(\) being a scalar polyno%ﬂl Now ¢(yifi = ¥{p)fi; hence, if ¢(y} =
then also y(u) = 0 ( M2, -+, #); and conversely. Hence if Lthe not.ltlon
is so chosen that u, }Q,’ NSNS are the distinet values of u;, the reduced charac-

teristic functlon\Qf\y g(x) is H (A — .

&l
&

208 f"tbe?’determinant |x — 2| = f{A) is expanded in powers of A, it is easily
seen® thaf the coefficient a, of A» =7 is (—1)7 times the sum of the principal
minors of = of order r; this coefficient is therefore & homogeneous polynomial of
degree 7 in the coordinates of . In particular, —a; is the sum of the coordi-
nates in the main diagonal: this sum is called the irace of = and is denoted
by trz.

If y is an arbitrary matrix, g a scalar variable, and z = » + uy, the coefli-
clents of the charaecteristic equation of z, say

an bbb o 4 b, =

! For instance, by differentisting | A ~ 2 | » — r times with respect to6 A and then set-
ting & = 0.
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are polynomials in u of the form

(18) Bs = &s + L o] + e + ,u‘a“, (asu = Qyy Gy = 1}

and the powers of 2 are also polynowials in 4, say

f
19 S r oy Tl e
(19) eEe “{-r-—1 1} “ir -2 2} T

. z gl ] . ,
where {s t} is obtained by multiplying s z’s and ¢ y’s together in every possi-
ble way and adding the terms so obtained, e.g., O

z Ko
{2 31;} = z¥y + 2yz + yzl R, D
If we substitute (18} and (19) in (17) and arrange according o) spowers of u,
then, sinee ux is an independent variable, the coefficients of its several powers
must be gero. This leads to a series of relations connectmg z and y of the form

(20) Za"'{;—sfi-l—j sii} (s 0,1,2 )

LI
where «,; are the coefficients defined &Br%@}b% %Hg in x it s ¥ } is
A A . N - = — — J

replaced by 0 whenj > 5. In pa,rticuhiff’ if ¢ =1,

s"

{nil 1}"}‘&11 —9 ?}\ C A - 1y+anx" T gun=20

which, when 2y = yz, beco;n\s}
P& (e~ 4 oo+ aw) = g).

When x has no repeé,‘séd roots, f(A) has no root in common with f(A) and 7'(z)
has an inverse @ %2.06) so that ¥ = g(x)/f'(z) which can be expressed as a
gealar polynoml\l in z; and conversely every such polynomial is commutative
with x. We therefore have the following theorem:

N

THE\REM 4. If z has no multiple roots, the only malrices commulative with
it are scalur polynomials in .

209 Matrices with multiple roots. We shall now extend the main results
of §2.07 to matrices whose roots are not necessarily simple. Suppose in the
first place ‘that « has only one distinet root and that its reduced characteristic

function is ¢(A} = (A — Ap)', and set
Me=m=E@—N=EF—-Mn-1 @=1L2 v-1)j
then
0l =0, zna =AMy Tn=Amitne G=1L2 v—2
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and

— & g1
=+ =20 + sx iy + (2)\1 71+

where the binomial expansion is cut short with the term 5]~ ' since 5} = ¢
Again, if ¢(A} is any scalar polynomial, then

rey - — ) .

gz} = g 4 ) = g) + ¢ Qim0 +7 g). l
It follows immediately that, if ¢*'(\} is the first derivative of g(\) which iz not
0 when A = A and (x — 1)s < » < «xs, then the reduced equation of g(z) is

[gtx) — g = 0. O

It should be noted that the first » — 1 powers of 5 ure hnL nl\ independent
since ¢(A) is the reduced characteristic function of . :nx‘
2.10 We shall now suppose that x has more than :”‘u\ root.  Let the redueed
characteristic funetion be

(21) ) = H (O = A \(~ > 1)
and set ' W W, dblauhbraby org in
(22) h < .@O\; ‘O — A

We can determine two f-cth po“]\nnmmh, AL and Nixy, of clegrees not
exceeding »; — 1 and v — {r,.& 1, regpectively, sueh that
M. (m {,\\)\\4- A= AN =1, ML # 0
If we zel A\
O _
(23} A gild) = M.(0h (0,

then 1 — = IA} is exactly divisible by ¢(A) and, being of degree v — 1 at most,
must be identically 0 hence

T

(24\3"\;\ D0 en = 1.

|

Again, from (22) and (23), ¢(\) is a factor of ¢.(A\lg (A (i # j) ard hence on
multiplying (24) by «{}) we have

(25) [eiMF = ¢id),  olMe; () =0, mod () (7 = j).
Further, if g{(A) is & scalar polynomial, then

90 = D) gV
(26) ;
= 2000 +g0I0 = A + -+ o gy 4 R
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where £ has the form ZC:(A)(A — A)"«\}, C; being a polynomial, so that R
vanishes when z is substituted for A,

211 M we put 2 for M in {23) and set ; for ¢;(z), then (24) and (25) show that
(27) ﬁ"l’z = o Py = 0 (T. # J 2 wi = 1,

It follows as in §2.07 that the matrices ¢, are linearly independent and none is
zero, since ¢i(A;) ¢ 0 so that o(A) is not a factor of wi(A), which would besthe
case were ¢i(z) = 0. We now put x for A in (28) and set n o

O\

(28) =z —AJes (1=1,2 .-, 7). A
Since the »ith power of (A — Aei(A) is the first which has go(f\} as a factor, 7
jie a nilpotent matrix of index »; (cf. §1.05) and, remembeﬁ;mg that ¢? = ¢
we have ’

(20) 2l = (2 = Ao # 0 (F <2, TENF T = et
(30) pr = haps 1 04 m??i: = JI'I - r N ls
equation (28) therefore becomes\w(w dbrauk lb‘l_m_y_m_g in

. — ’ ":’f‘ ) g[‘ 1)(}\ _n'-—l
(30 glz) = Z l:g(la')sb‘f + g ()’:V)T}; Mo _(.__:_1_)_1 5

and in particular \

(32) % é 2 (g + 1) = Zae

The matrices ¢, nd e are called the principal idempotent and nilpotent
elements of x co1”1';4:5;;mnchng3 to the root A;.  The matrices ; are uniquely deter-
mined by the fdl Gwing conditions: if ¥¢ (i = 1, 2, -+-, r) are any matrices
such that &3

.\“\ X (1) afy =
33 \J (ii) (z — Ay« is nilpotent,
(iii} ZV: 1, v = 0
then y; = ¢; ({ = 1,2, +»+, r). Forlet 8; = eufy; from (i) 8;; alse equals
Yiuei. From (i) and (28)
7= I — A(@:’, E.f = .Tl&_.‘ - Ai’!&f

are both nilpotent and, since n: and ¢: are polynomials in z, they are commu-
tative with ¢, and therefore with £;; also

28 = Abi; + (z — Megp; = My + Biy;
= N9y + (@ — Neas = My + L
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Hence (A; — Apbi; = &0 — nfy. But if 4 is the greater of the indices of &
and 7, then, sinee all the matrices” concerned are commutative, cach term of
(i — nabj)* contains £% or 7% as a factor and is therefore 0. If 9,; = 0, this
is impossible when 7 > j since 6;; is idempotent and Ay — X; ¢ 0. Hence
pip; = O when ¢ # j and from (lii)

¥ = 'f’:’z‘:"i = Yyp; = @il = v

which proves the uniqueness of the ¢'s.

212 We shall now determine the reduced equation of g(z). If wé\set ¢: for
g(z)e:, then ‘O

# T h Al) ‘l;:: '
{34) ge = ghdes + ¢'idme + - g—(;'_"_:j(')?‘ﬁ}{' !
ghdei + &5 “'\i.’
say, and if s; is the order of the first derivative id ’(3"4) which is not 0, then
i is a nilpotent matrix whose index k; is givenby' by = 1 < vifs; < ke
If ®(\) is & scalar polynomial, and v = g(AdLv

®(g(x)) = 2 ®{gle: = Z |:‘1’(‘Y'a'}%9i ‘}73‘&"(%)5"' + e+ Hi’sk‘_ ]':I

www_dbraulibl'ari{’.m'g.in
so that ®(g(z)) = 0 if, and onlys if, g(A) is a root of O(A) of multiplicity k..
Hence, if r
(T = T = g0
where when two or more, values of 7 give the same value of g(x.), only that one

is to be taken for which % is greatest, then w(\) is the reduced characteristie
function of g{z), «{&B 2 part of this result we have the following theorem.

'S
THEOREB@\'&\“IJ‘ g(\) 25 a scalar polynomial and z & matriz whose distinct
rools are Mpds, - -+, N, the roots of the mairiz g(x) aret
A
\H‘, - g(kl): G(A‘Z)f Tt g(xr)-

If the roots g(\,} are all distinct, the principal idempotent elements of g(z)
are the same as those of z; for condition (33) of §2.11 as applied io g{x) are satis-
fied by ¢: ( = 1,2, ---, v}, and these conditions were shown to characterize
the principal idempotent alements completely,

2.13 The square root of a matrix. Although the general question of functions
of a matrix will not be taken up till a later chapter, it is convenient to give
here one determination of the square root of a matrix z.

* That these are roots of g(z) follows immediately from the fact that A\ — z is & factor
of g(\) ~ p(z}; but it does not follow so resdily from this thet the only roots are those
given except, of course, when r = » and all the quantities g{x;) are distinct.
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If o and @ are scalars, o 7= 0, and (a 4- )} is expanded formally in a Taylor

series,
+ gt = gt E BY
{a & a ‘ 5,.({1)
21

then, if 8, = o E 5.{3/a)r, it follows that
a

(35) 83 =a+4p+aT, ~N

where T, is a polynomial in 8/« which contains no power of 8/a lower, thad the
yth. TIf & and b are commutative matrices and a is the square of 2 knoun non-
singular matrix af, then (33) being an algebraie identity in « a.ud ‘B remains
true when a and b are put in their place.

If x; = Aiwpes + w:is the matrix defined in §2 11 (32}, then\sn long ag h; ¥ 0,
we may et a = kg, 8 = n; 8inee Ay = (A rp.)* and\ipbhis case the Taylor
series terminates since #t = 0, thatis, T,; = 0 and the.gquare of the terminating
series for (g + 78 in powers of 5 equals A +\,~ It follows immediately
from (32) and (27) that, if = is a matrix no ong, of ‘whose roots ig 0, the square

of the matrix
www.dbr aullbral y org.in

2 = 2)@ {:¢.+ gx .n)

(36)
Gyt @i O (1-)""”]
\\ R TR TR T AV
sz
If the redueced equatlon of z has no multiple roots, (36) becomes
37 Rooa 2t = DNk

and this is valid{ev n if one of the roots is 0. I, however, 0 is a multiple root
of the reduce@dequation, x may have no square root as, for example, the

3
ol
Formula (36) gives 2° determinsations of z* but we shall see later that an

infinity of determinations is possible in certain cages.

214 Reducible matrices. If z = a1 + 2. is the direct sum of z; and 2; and
e1, ¢ are the corresponding idempotent elements, that is,

matrix

&xr = Ti = Iy, ee; = 0 (E=7147=12),

then 27 = 2 + ] (r > 2) and we may set asbefore 1 = 2’ = al+r)=e+ e
Hence, if fA) = M + A"~ 1 4+ -+ + bnis any sealar polynomial, we have

flz) = ef(z) + efl@) = flz) + flz) — b,
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and if g(A) is a second scalar polynomial
firlglx) = esf(z)g () + pofrsig(rs).

Now if f{)} is the reduced characteristic function of r, regarded as a matrix
in the space determined by e,, then the reduced characteristic function of o,
as & matrix in the original fundamental space is clearly Af.(A\) unless X ig a‘
factor of fi(A) in which case it is simply fi(A). Further the reduced character-
istic function of z = 7, -+ 2, is clearly the least common multiple of f;(\) and

f.{x); for if
"/'
. . A\
¢ = il g (n) = Lol XNt \
then "‘\\\M"
s \v/
Yl 4 ) = ef(e) + faflry) ,\g“%
= eyfileig () + f'-_._f,.[';r-_f]g,rg(.{i‘ﬁz= (
N
(N
" &
\S,
N
www.dbraulibraryerg.i
W TAaUull If{fy‘x@lg In
Q
O
N\
\J
"\
O
AV
\/
{\



CHAPTER 111
INVARIANT FACTORS AND ELEMENTARY DIVISOHS

3.01 Elementary transformations. By an elementary transformation of a
matrie polynomial a(\) = |l ai; || is meant one of the following operations on
the rows or columns, \
Type I.  The operation of adding to a row (column) a different row (eolmn)
multiplied by a sealar polynomial 80.). )
Type I1. The operation of interchanging two rows {eolumns).,
Type IIL. The operation of multiplying a row {eolumn)¢by“a constant
k0. A
These transformations can be performed algebraically. as’hﬁlows.
TypeI. Let .

Ny

P‘-‘; =1 + 9(1\)81; (‘2. = _j;'?\\:

() being a scalar polynomial; then | P, | = 1@1’1:\ .
Pija = vapsﬂ}m‘#i&r@-@mw
T ™

which is the matrix derived from a(h)~bjr adding 8 times the jth row to the ith.
The corresponding operation on ABe columns is equivalent to forming the
product aP;;, {”,\

7

Type II. Let @ he the mattix

Qi = 1.\'"7“' € — ¢ + €, + ¢ (¢ # )
that iz, @, is the m.atfgi)& derived from the identity matrix by inserting 1 in
place of 0 in the cgéfficients of ¢;; and e;; and 0 in place of 1 in the coefficients

of ¢;; and e;;; then} Q. | = —1 and

Q,-_,-G- :_:E T Z @igCiy — 2 Qiofiq + 2 Qiolig + E Tiyfiq
\ Jpw a T g ¢

thatis, Qe is derived from a by interchanging the ith and jth rows. Similarly

af):; is obtained by interchanging the :th and jth columns.

Since any permutation can be effected by a succession of transpositions, the
corresponding transformation in the rows (eolumns) of a matrix ean be pro-
duced by a succession! of transformations of Type IL.

Type III. This transformation is effected on the rth row {column) by multi-
plying on the left (right) by B = 1 + (k — 1)e,.; it is used only when it is
convenient to make the leading coefficient in some term equal to I.

T 12, . nYy.
! The transformation corresponding to the substitution (;-'J|,Uz o ;u.) is@ = Z Cip;.

i

33
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The inverses of the matrices used in these transformations are
Pil=1—6e;, Q) =Qy R '=1+E"— e

these inverses are elementary transformations. The transverses are also ele.
mentary since P;; = P;;, and Q;; and R are symmetric.®

A matric polynomial 5(A) which is derived from a{\} by a sequence of ele-
mentary transformations is said io be eguivalent to a{r); every such poly-
nomial has the form p(A)a(x)q(A) where p and g are products of elementary
transformations. Since the inverse of an elementary transformstion is ele-
mentary, a(\} is also equivalent to b(A). Further, the inverses of Phand ¢
are polynomials so that these are what we have already caued\elementary
polynomials; we shall see later that every elementary polvnomlal can be
derived from 1 by a sequence of elementary transformations,

In the following sections we require two lemmas whoge “Droots are almost
immediste. »"\‘

Lemma 1. The rank?® of a malriz is not alfered by 9\?1‘ tlementary transformation,

Forif | P | # 0, AP and PA have the same. fknk as A {§1.10).

Lemma 2. The highest common factor of. the coordznates of @ matric polynomial
18 not allered by an elementdhyahﬂhlsﬁomu&sn

This follows immediately from the ‘definition of elementary transformations.

P&\

3.02 The normal form of aii;atrix. The theorem we shall prove in this sec-
tion is as followa. \

Taeorex 1. If @Y iz o matric polynomial of rank r, it can be reduced by
elementary tmns:{({?@:&tions to a diagonal matriz

.'\'\\ 3 (23] (}‘) E
3 (M)

M D) alNes = (N = PO0a(\QO),

0
* The definition of an elementary fransformation given nbove is the most convenient
b‘}t not the only possible one. All three transformations have the form T = 1 -+ z8¥

with the condition that 1 4 Szy is not 0 and is independent of A.
* By the rank of a matric polynomial is meant the order of the highest minor which does

not vanish identically. For particular values of A the rank may be smaller than »; there
are alwaye values of » for which it equals r and it cannot be greater.
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where the coefficrent of the highest power of \ in each polynomial (M) s 1, aiiza
facfor Of N 1, "y & (3 = 1, 2, S ]_)’ and P(A), Q(?\) are efememary
polynomials.

We shall first show that, if the coordinate of a(\) of minimum degree m, say
@pq is MOt & factor of every other eoordinate, then a(\) is equivalent to a matrix
in which the degree of the evordinate of minimum degree is less than .

qupose that a,, is not a factor of api for some ¢; then we may set g, =
Ba,, + %a where 8 is integral and @, is not & and is of lower degree than m.
Subtraeting 8 times the gth column from the 7th we have an equivalent rpakrx
in which the coordinate! (p, 7} is am whose degree is less than m. The same
reasoning applies if a,, is not a factor of every coordinate a;, in the gthy sohxmn

After a finite number of such steps we arrive at a matrix in which s{cetrdinate
of minimum degres, say k,,, i3 a factor of all the eoordinates which' lie in the
same row or column, but is possibly not a factor of some other coordinate k.
When this is so, let ky; = kg kig = vk,, where 8 and, ysare integral. If we
now add (1 — 8) times the gth column to the jth, (@)} and (i, ) hecome
respectively N

k" = km" + (1 - ﬁ)k;‘q = kpq: k!? ku -+ (1 \)}C;q = k” -+ (I — 6)TkPQ‘

Here either the degree of ki is lesswtlibnaulﬁéﬁ'@fy@‘qgéﬁ‘ k,; has the minimum
degree and is not a factor of %y, which Iles \in the same eolumn, and hence the
minimum degree can be lowered as ahOve

The process just deseribed can besepeated so long as the coordinate of lowest
degree is not a factor of every otht?r eoordinate and, since each step lowers the
minimum degree, we derive ifi'a finite number of steps a matrix |] b; || which
is equivalent to a(X) and infwhich the eoordinate of minrimum degree is in fact
a divisor of every other @oordinate; and further we rmay suppose that by, =
a (A} is a coordinate of\mimmum degree and set by; = v:byy, b)y = 857, Sub-
tracting v, times the\first colamn from the 7th and then §; times the first row
from the jth (7, ,1'¥\2 3, +-+, n) all the coordinates in the first row and column
except by, begame 0, and we have an equivalent matrix in the form

AN

R

a0 0 e 0
\ 0 b% z;‘23 Tt b?n
(2) 0 b:sz bas 0 baa
0 bn‘z bns e bnn

in which e is a factor of every &y. The coefficient of the highest power of X

in @y may be made 1 by a transformation of type IIL
The theorem now follows readily by induction. For, assuming it is true for

¢ That is, the coordinate in the pth row and ith columz.
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matrices of order » — 1, the matrix of this order formed by the b’s in (2) cap
be reduced to the diagonal matrix

sz(x)
aa()\)

a,(A)

. Q

0 O\
where the a's satisfy the eonditions of the theorem and each haé\m as a factor
(§3.01, Lemma 2), Moreover, the elementary transformatdons by which this
reduction is carried out correspond to transformations affe:(’:t.ing the last n — 1
rows and columns alone in (2) and, beeause of the zef‘o} in the first row and
column, these transformations when applied to (2 ddr not affect its first row
and column; also, since clementary transformafjens do not alfect the rank
{§3.01, Lemma 1), s equals r and a(A) has therefore been reduced to the form
tequired by the theorem. O

The theorem is clearly true for matrieés’ of order 1 and hence is true for
any order. www,dbrauljbrart}f:o};grin
Corollary. A matric polynomial whése determinant, is independent of X and is
not 0, that is, an elementary polyhomial, can be derived from 1 by the product
of a finite number of 'elemeppa?y transformations.

The polynomizls «; are oa\}led the tnvariant factors of a(X),

3.03 Determinantalyand invariant factors. The deferminantal Sfactor of the
sth order, D,, of a 'ﬁl{itric polynomial a(\) is defined as the highest common
factor of all mingts”of order s, the coefficient of .the highest power of X being
taken as 1. An elementary transformation of type I either leaves a given
minor unaltéred or changes it into the sum of that minor and a multiple of
anot-hep«{\if,,\ the same order, and a transformation of type II simply permutes
the minots of a given order among themselves, while one of type III merely
multiplies 4 minor by a constant different from 0. Hence equivalent matrices
have the same determinantal factors. Bearing this in mind we see immediately

from the form of (1) that the determinantal factors of a(A} are given hy

D,= iy -+ a, i=1.2 -, 1),  D,=0{s>7),
50 thats

o, = DazDs—l-

The invariant factors are theréfore known when the determinantal factors are
given, and vice versa.

' Since @, _; is & factor of a,, it follows that also s afactor of D, _ 1 D, , 1.



[3.041] NON-SINGULAR LINEAR POLYNOMIALS 37

The definitions of this and the preceding sections have all been made relative
to the fundamental basis. But we have seen in §1.08 that, if 4, is the matrix
with the same array of coordinates as a but relative to another hasis then
there exists a non-singular eonstant matrix b such that ¢ = b 'gb so t:_.hat- o
and @ are equivalent matrices. In terms of the new basis a, has the same
invariant factors as @ does in terms of the old and a, being equivalent to a;,
huss therefore the same invariant factors in ferms of the new basis as it has in
the old. Hence the invariant and determinantal factors of a matric poly-
nomial are independent of the (constant) basis in terms of which its coordi-
nates are expressed. ~

The results of this section may be summarized ag follows. .

oA

TuroreM 2. Two mairic polynomiels are equivalent if, and, wg?y af, they
have the same invariant faclors. (n.;.

3.04 Non-singular linear polynomials. In the case of‘}ii\uear polynoraials
Theorem 2 can be made more precise as follows, ’
N

Turorem 3. If ax + b and cx -+ d are non- m@ularl near polynomials which
have the same invariant factors, and if |e| #= Q) {hére exist non-singular constant
matrices p and g such thal wwrw . dbr alfl,lb“raly .org.in

plax + b)ps o+ d.

We have seen in Theorem 2 thatQ{.here exist elementary pelynomials P(0},
Q) such that m\

(3) ‘o }\\d POJan + BIGO).

Since [¢| = 0, we can employ the division transfcrmaiion fo find matric poly-
nomials pi, ¢ and coxkstant matrices p, g such that

Pﬁ{) (e + dp+p, QO = qlr +dh + ¢
Using this m {,3) we have

(4) \% d = pen + bg + (A + dplad + D) + Plax + baled + 2}
— (ex + dpfer + Dqleh + d)

and, since from (3)
(an + B)Q = P + d), Plar +b) = (e + Q7
we may write in place of {(4)
s plan 4 blg = (1 — (oA + )P~ £ Qi — plah F bimlier + d)
v = [t — (&x + HRHex + &
where & = pP,-1 + Q~'p — pulah + b)gy, which is integral in A sinee Pand Q
ave elementary. If B # 0, then, since {¢| # 0, the degree of the right side
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of (5) is at least 2, whereas the degree of the left side is only 1: henee R =0
so that (5) gives plax + b)g = ¢x + 4. Since cA + d is not singular, neither
p nor ¢ can be singular, and hence the theorem is proved.

When {¢| = 0 (and therefore also |a| = 0) the remaining conditions of
Theorem 3 are not sufficient to ensure that we can find constant matrices in
place of P and @, but these conditions are readily medified s0 as to apply to
this case also. If we replace A by A/ and then multiply by u, ek + bis replaced
by the homogeneous polynomial aA + bu; and the definition of invariant factors
applies immediately to such polynomials. In fact, if a] = 0, the invariant
factors of ak + bu are simply the homogeneous polynomials which are ‘equiva-
lent to the corresponding invariant factors of ax + b. If, however, M| = ¢,
then | ax -+ bu | is divisible by a power of x which leads to factorshof the form
¥ In the invariant factors of ax + by which have no counterpart in those
of ax 4 k. _ N

Hle] = 0but jex + d] = 0, there exist values, M3 0, u, such that
[eh + duy | = 0 and, if we make the transformation O

() A= e, g= e +:ﬂ{\:

ax -+ by, cx + du become e + B, el + ‘a‘lﬁﬁhere a; = ak; + by, ¢ =
ch1 + diy, and therefore e | = 0. Further.,:w'hen ax + bu and ex + du have
the same invariant factors, this is also truelof e + b8 and e + d,8. Since
ler] # 0, the proof Eff"'i‘hdetﬂﬁ'aelfﬂ:lllbﬁal@}'%ﬁp]ﬁlcable, so that there are constant
non-singular matrices p, ¢ for which@(a{a + bBlg = cra + di8, and on revers
ing the substitution (6) we haves,

ﬁ{&)}‘%— bu)g = ex + du.

Theorem 3 can therefore e extended as follows.

A</
THEOREM 4, If ,Q:e' nan-cingulor polynomials ah + by, ch + du have the

same invariant Q;c&jrs, there exist non-singular constant matrices p, q such that
plar + bu)g N+ du

An impottant particular case of Theorem 3 arises when the polynomials
bave the\form » — b, A — d. For if p(A — b)g = A — d, on equating coeffi-
clents we have pg = 1, pby = d: hence b = p'dp, that is, b and d are similar.
Conversely, if b and d are similar, then A — & and A — d are equivalent, and
hence we have the following theorem.

THEOREM 5. Two conslant malrices b, d are similar if, and only if, A —b
and A — @ have the same invariant factors.

3.05 Elementary divisors. If D = |gy + b|is not identiecally zero and
if X\, Ao, -+, A, are its distinet roots, say

D=3 =M =% o (v =)



{3.06] MATRICES WITH GIVEN DIVISORS 39

then the invariant factors of ah + b, being factors of D, have the form

o) = (}, —_ ;\l)m(h —_ ),‘2)"11 ()\ —_ A,)"l
=2 = R o (A = A

o SRR s

&
i

@ = (A = A = M) (A = A

- . .
where Z{ vy = v; and, since o is a factor of «; 4 1, ~
e
(8) i S X s Lo (B =1,2, -1, 3) O\
Such of the faectors (A — A;)"s as are not constants, that is, thde for which
vy > 0, are called the elementary divisors of e + b. The elemé"ntary divisors
of » — b are also called the elementary divisors of &. When sl the exponents
re; which are not 0 equal 1, b is said to have simple elemenfhry divisors,
For some purposes the degrees of the elemeniary divigors are of more impor-
tance than the divisors themselves and, when thm\is the case, they are indi-

cated by writing ..\
(9) [(”nl; Ppow1,1; * 7y Vll) (""nﬂ; P - 1‘2;' Ty vl!l)! -t ']
n
where exponents belonging to v sam lx’lﬁlgsrl ﬂﬁ%rj are in the same paren-

thesis, zero exponents being omitted; {9} 15 sometimes called the characteristic
of ar -+ b, If a root, say Ay, is rzero,’kt is convenient to indicate this by writing
v}, in place of »q. &
The maximum degree of | X 3 b | is nand therefore E vi; < n where the
equality sign holds only whén\l al # 0. i
The modifiestions negésdary when the homogeneous polynomial ex + bu
is taken in place of a)s .}. b are obvious and are left 1o the reader.

3.06 Matrices fh given elementary divisors. The direct investigation of
the form of &%atrzx with given elementary divisors is somewhat tedious.
It ean be carmed out in a variety of ways; but, since the form once found is
easily venﬁed we shall here state this form a,nd give the verification, merely
saying in/passing that it is suggested by the results of §2.07 together with a
study of a matrix whose reduced characteristic funetion is (A — M)".

THEOREM 6. If M, Ay, -+ -, A, are any constants, not necessarily all different
and v, va, -+, v, are posilive integers whose sum 18 n, and if a; is the array of »
rows and columns given by

M 1 C 0 0
0 o

0 a1
(10) .

o o
o oo -
oo
o> -
=
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where each coordinate on the main diagonal equals ), those on the parallel on 43
ight are 1, and the remaining ones are 0, and if a 1s the mairiz of n rows and columng
given by

| a !
@

{11) a =

a,

composed of blocks of terms defined by (10) arranged so that the main diagonal
of each lies on the main diagonal of a, the other coordinaies being 0, stéen A—ag
oA

has the elementary divisors PR

(12) (h - Ai)yl) (k - A'.!)"! TN (‘\ - Rs)r' (‘.‘3 .

N

In addition to using a; to denote the block given in QQX’W& shall also use it
for the matrix having this block in the position indieated in (11) and zeros
elsewhere. In the same way, if f; is a block with W rows and columns with
I’s in the main diagonal and zeros elsewhere, we‘miay also use Ji for the corre-
sponding matrix of order n. We can then write

N—a=30f—a), faxsld=qd, 3f=1

.dbraulibragyorg.i
The bloek of terms co‘f’r\g:\;"f)gn ?ﬁgll%lg)aﬁ\ ?f—g a: has then the form

*

R
\i - N —1
{13) ¢ \"
\ N\ . {v; rows and cclumns)
72N . —1
A= N

o
where only th&ﬁ“hﬁ—zero terms are indicated. The determinant of these v
rows and coluinng is (A — A.)* and this determinant has a first minor equal
to +1; thelinvariant factors of Af; — a;, regarded as a miatrix of order v,

are therefo?e 1,1, ---, 1, (A = A% and hence it an be reduced by elementary
transfommation to the diagonal form
A~ A%
1
1.

If we apply the same elementary transformations to the corresponding rows
and columns of X — a, the effect is the same as regards the block of terms
Afi — a; (corresponding to ¢; in (11)) simce all the other coordinates in the rows
and columns which contain elements of this block are 0; moreover these trans-
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formations do not affect the remaining blocks )\f, ~ a; (7 # 1) nor anv 0 coordi-

nate. Carrying out this process for ¢ = I, 2, -+, s and permuting rows and
columns, if necessary, we arrive at the form
A=)
(A =A™
= A)n
1 o
O\
1 N\
Suppose now that the notation is so arranged that P\Y '
M=ENh= e = Ap =, u Zay 2 '\\2 £

but A; 7 « for ¢ > p. The nth determinantal factor D..’"t’-]ien eontaing (A — a)
P

to the power 2 v; exaetly, Each minor of order nQ 1 contains at least p — 1

: RS

of the factors ANV

(14) (A = a7, e dbpaulibrarg ey,

and in one the highest power (A — a)'yié.’f&ﬂking; hence D, _, contains (A — &)
2 RN

to exsctly the power 2 v; and hende the nth invariant factor «, contains if

2
to exactly the »th power. ¢ }m‘iar]y the minors of order n — 2 each contain
at least p — 2 of the factons}lél) and one lacks the two faetors of highest degree;

P

heice (A — a) is con‘éﬁuneci in D, _ 3 to exactly the power Zv,— and in ., .,

to the power », Cohtlnulng in this way we see that (14) gives the elementary

divisors of g u\h are powers of (A — a) and, treating the other roots in the
same way, We 'see that the complete list of elementary divisors is given by (12)
as requzed by the theorem.

307 If A is a matrix with the same elementary divisors as g, it follows from
Theorem 5 that there is a matrix P such that A = PaP-! and hence, if we choose
in piace of the fundamental basis (e;, &, ---, e.) the basis (Pe,, Pes, -+, Pey),
it follows from Theorem 6 of chapter 1 that (11) gives the form of A rLlatwe
to the new basis. This form is called the canonical form of 4. It follows
immediately from this that .

) gt |

. :
& I

|

(15) PlAP =
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where a’ is the block of terms derived by forming the kth power of a; regardeq
as & matrix of order v,.

Since D, equals | A — a, it is the characteristic function of « (or A) and,
since D, _; is the highest common factor of the first minors, it follows from
Theorem 3 of chapter 2 that a, is the reduced characteristic function,

If we add the f's together in groups each group consisting of all the f's that
correspond to the same value of A;, we get a set of idempotent matrices, say
o1, va, to0y @, corresponding to the distinet roots of a, say ay, a, e ap
These are the principal idempotent elements of a; for (i) ap; = ¢, (ii) (as ade;
is nilpotent, (iii) Tp; = Zf; = 1 and gip; = 0 (@ = J) so that the condifions of
§2.11 are satisfied. KON

When the same root a; oceurs in several elementary divisors, the;ﬁ;};rrésponding
f's are called partial idempotent elements of a: they are not Adue as is seen
immediately by taking a = 1. A

If @ is one of the roots of A, the form of 4 — & ia"s();iet..imes important,
Suppose that Mt = X = -+ = A, = a, Ay 7 a [ >0 and set

D
‘\ N
the corresponding array in the 7th block of a;b’& (ef. (10, (11;) being

")

b" = i; — df.‘

www.db)}ialﬂil:ﬁ'ar%;,ofg,i;
PN
(18) NY
N -1
\\ N — .
In the case of the first p.blbjcks A: — a = 0 and the corresponding by, by, ---, b,
are nilpotent, the indexef b, being »; and, assuming vy = py, > ... 2y, asg
before, (4 — a)* hgé\fﬁe form
;%“': i‘l bic |
DN | b% ‘i
~O PoA ~apP =] .

V

P

or, when & > »,

(17} P4 — P =
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Since none of the diagonal coordinates of by, oo, b, are 0, the rank
P L

of (4 — a)* when &k 2 », is exactly n — 2;-,- = 2;,‘. and the nullspace

. 1 -
of (A — a)* is then the same as that of A - a)u Iier;ce, if there exists a

vector z such that (4 — a)* z = 0 but (A — a)pr =15 5= 0, then (i) & < »,
(ii) z lies in the nullspace of {4 ~ )%,

3.08 Invariant vectors. If A is a matrix with the elementary divisors
given In the statement of Theorem 6, then A — A is equivalent to A — @ and
by Theorem 5 there is a non-singular metrix P such that 4 PaPz, Mf we
denote the unit vectors corresponding to the rows and columns ofl b';.\ln (10)
by ef, e}, -+, ¢’ and set O

%

G PG =1,2, i1, 2 ;&l
(ISJ z,‘f - { U (J < 1 or > by OF 7 < 1 OF >.s):\\'
the )
a'gi = MGI, Gf-'a_; = A*'81: + e}, Tt O?y‘: = Aie»‘.' =+ 8:;—1
and hence Pa\d .
) . www.dbl'auli,l?rary_org_lll
{(19; Azy = dxl 4+ 2] ~(§ = L2V 0i=1,2 .-, g,

The vectors z} are called a set of snultiant vectors® of 4.
The matrix 4 ean be expressed(in terms of its invariant vectors as follows.

We have from (10) '{\\

N/

q; = Z ()\;?}¥ €; -1)Se] = 2 e:80e; + e} 1)

»
H

</
and hence, if '\~
. ad . .
20) Ay = el = (PP,
then “\f'f"

@) 74 = 3 0 i o0syi = D) riS0t + uie

I'I,f

where it should be noted that the y’s form a system reciprocal to the z’s and
that each of these systems forms a basis of the veetor space since | P} 0.
If we form the transverse of A, we have from (21)

(22) 4= D% Ol 4yl 8a!

s 1f hmmogeneous coordinates are used so that vectors represent points, an invariant
vectar is usually called s pole.
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so that the invariant vectors of A’ are obtained by forming the system recip-
roeal to the 2's and inverting the order in each group of vectors corresponding
to a given elementary divisor; thus

Ayh = hal Ayl o=k o+ uk, o, Ay = Al 4+ gl

A matrix 4 and its transverse clearly have the same elementary divisors and
are therefore similar. The matrix which transformns A into 4’ ean be given
explicitly as follows.  Letf ¢; be the symmetric array

0 0 «-- ¢ 1 Q
06 -« 1 0 A
N .
............... (v: Tows and.olumns).
o 1 0 0 RS
10 0 ¢ R4
Tt iz easily seen that ¢ia; = aj¢: and hence, if € is the tatrix
N
s \'L
CEENG
AV

I
= No/

i

| Y
www.dbraulib Fl'y.o:r:gjn—

I :" Js

we have Qe = 2'Q, and a short galetlation gives 4’ = R'AR where E is the
symmetric matrix Q

(28) “®= PgP = PGP

If the elementary divisai"sfof A are simple, then Q@ = 1 and K = PF,

I the roots A; of ;t];?e’ elementary divisors (12) are all different, the nullity
of (4 — A;)is 1,’3\&@‘ hence z{ is unique to a scalar multiplier. But the remain-
ing z; are not\imique. In faet, if the z’s denote one choice of the invariant
vectors, we riay take in place of o

SOz = blel Frizi o4 o R G =12 -, 00
o
wher&he k's are any constant sealars subject to the condition %{ = 0. Sup-
posenow that y = Xy = -+« =}, = q, MEa@>plandey 2w = .0 2,
as in §3.07. We shall say that 21, %3, v+, 2p i3 a chain” of invariant vectors
belonging to the exponent & if
(941 ={Ad —af=iy =20 (i=1,2 -, k)
k24fl 1
(4 — a)z = 0.

It is also convenient to set 2, = Ofor 7 < 0 or > k. We have already seen
that & < », and that 2 lies in the nullspace of (4 — &) and from (17) it is

T We shall eny that the ehain is generiated by z4.
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seen that the nullspace of (4 — «)” has the basis (z{;5 = 1,2 ... 4 ; =

1; 21 STy p)-
Since z: belongs to the nullspace of (4 — &), we may set

(28) Z = Zp) i i'*i.f-’ﬁf-

=% f=1

and therefore by repeated application of (15) with A, = «

(26) (A — ayz = D) ford s

o N
From this it follows that, in order that (4 — a)*z = 0, only values p,[)'\i'.'llich
are less than or equal to % can actually occur in (25) and im™ordér that
(A — a)® 71z 7 0 at least one {i must be different from 0; lge,r:gcé"'

% = 2 (Cazi + Conorzior + --0) “\\

(27) -1 = E (fikfci:—l + fa‘,k—lIi -;.-}QJ.‘: )

7 = E tat ;‘.www_dbraul’i't{ra‘ry.org.in
Finally, if we impose the rest-rictionjh:git % does not belong te any chain per-
taining to an exponent greater than E, it is necessary and sufficient that & be
one of the numbers v, m, -, % and that no value of ¢ corresponding to un
exponent greater than & oc@&i’n 2n.

3.0 The actual deter,minétion of the vectors x] can be carried out by the
processes of §3.02 and §3.04 or alternatively as follows. Suppose that the
first &1 of the expog'chfé i equal 7,, the next & equal n,, and so on, and finally
the last s, equal\py’ Let 9, be the nullspace of (4 — a)™ and 3] the nullspace
of (A — &)V then T, contains N;. If P is a space complementary to
R, in gtlz“{}ké}l for any vector z in P we have (4 — a)r = 0 only when
Tz ni\;ﬁ"}‘so, if @1, &2, -+, Zm, i & basis of P, the vectors

(28) (A4 —ayz(r =101 -, m—1
are linearly independent; for, if
n—1
$ S it =m0
some &, being different from 0, then multiplying by (4 — wi™ =" 7 L we huve

(A — a}m? Z bire =0,
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which is only possible if every £, = 0 since 2, 2, -- -, Im form & basis of 9p
and for no other vector of My is (4 — a)m =1z = 0. The space defined by‘(28)1
clearly lies in 9t;; we shall denote it by €. If we set 9, = N + 2 where |,
is complementary to £ in %, then M, contains all vectors which are member:
of sets belonging to the exponents ny, ni, --- but not lying in sets with the
exponent n.

We now set Mz = My + Dy where Ny is the subspace of vectors z in N, such
that (A — a)»—1! 2 = 0. As before the elements of 4, generate sets with
exponent n; but are not members of sets with higher exponents ; and by a repeti.
tion of this process we can determine step by step the sets of invariant vectors
corresponding to each exponent n.. \

NG
)

O
. "
www.dbraulibravy.org.in
A \ad
o 4
&Y
o3

N
*



CHAPTER IV
VECTOR POLYNOMIALS. SINGULAR MATRIC POLYNOMIALS

4.01 Vector polynomials. If a matrie polynomial in A js singular, the elements
of its nullspace may depend on A. We are therefore led to consi der vectors
whose coordinates are polynomials ir a scalar variable A; such a vector is called
a veclor polynomial. Any vector polynomial ecan be put in the form

2(\) = zoA™ A zm—1 4 L + z,

where 2o, 21, '+, zn are vectors whose coordinates are independefit-of A and,
if zo # 0, m is called the degree of z(\), In a linear set with 8, basis composed
of vector polynomials we are usually only concerned with those vectors that
bave integral ecordinates when expressed in terms of the besis and, when this
is so, we shall call the set an infegral set. In a basis‘dP an integral set the
degree of an element of maximum degree will be calleththe degree of the basis.

In practice an integral set is often given in tqrnﬁ'of a sequence of veetors
which are not linearly independent and so do ngtform a basis. For the present

therefore we shall say that the seqw&edﬁrggﬁmpywmja]g
(1) a{d), 22()\)!'"':::3 2\

defines the integral set of all veetorg‘c's'f the form Z{:(A\)z.(\) where {’s are scalar
polynomnials, and show later that this'is really an integral set by finding for it
an integral basis. The sequence (1) is said to have rank r if | z;2;, - - zi, |
vanishes identically in A for aJ\l‘ choices of s z’s when s > r and is not | dentically
0 for some choice of the 2ls when s = r.

The theory of integralvsets can be expressed entirely in terms of matric
polynomials, but it Wil make matters somewhat clearer not to do so at first.
By analogy with mattices we define an elementary transformation of a sequence
of vector polyno\l\xiiﬁls as follows. An elementary transformation of the sequence

Q.

(1) is the ope’,fat-ion of replacing it by a sequence z;, z;, - --, 2, where:
\ J Type 1:2; =2+ 2 tolo 2y = 24 (g = 1),
Type II: z) = z,, z:.-'p:‘z,v, 2, = 2,{g # i, ),
Type IIL: z, = pyzp, (p = 1,2, -+, k)

where the {’s are scalar polynomials and the p’s constants none of which is 0.
The rank of a sequence is not altered by an elementary transformation, arfd
two sequences connected by an elementary transformation are equivalent in
the sense that every vector polynomial belonging to the integral set defined
by the one also belongs to the integral set defined by the other.
Two sequences which can be derived the one from the other by elementary
transformations are said to be equivalent. The corresponding integral sets
47
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may also be said to be equivalent; and if only transformations with constang
coefficients are used, the equivalence is said to be strict.  IZguivalence may.also
be defined as follows. If P is an elementary matrix which turns any vector of
the integral linear set (z1, 25, - -, 2} Into a vestor of the same set, then # is
easily shown_that this set is equivalent to (Pz), Pz, ---, Pz} and conversely;
we also say that the linear set (21, 25, -+ -, 2i) 18 {nvariant under P although the
individual elements of the basis are not necessarily unchanged. If the restrie-
tion that P leaves (zy, 2., +--, 2 invariant is not imposcd, the two sets are
said to be similar.
"N\

402 The degree invariants. We have seen in the previous seftion that
the sequence in terms of which an integral set is defined may¢be)transformed
by elementary transformations without altering the integr@l sct itsell. We
shall now show bow we may choose a normalized basis afid, determine certain
invariants connected with the set. Let the vectors (I ),\\i’hcn written in full, be

/N

(2) 85()\) = )\'“iz,-o + K _JZil + "N 'i" Zimgy
and suppese the notation so arranged that mg“é‘mg < .-+ < my. Suppose
further that the leading coefficients zm, ZQQ\, vev, 2, .10 are linearly inde-

pendent but that

www.dbraulibra ~g.in
Zs =“(§ : i 2i0y

. 1

the »'s being constants not all\0; then m, > m (1 = 1,2, +--, s — 1) and

P

" "1
\\ * h"‘ m, — W
O\ 2, = %5 — E I ";‘I'A LR £

£ I
A
is either 0 or haga-dower degree than z,, and it may replage 2, in the sequence.
After a ﬁ;\e\‘*}umber of elementary transformations of this kind we arrive
at a sequenbe equivalent to (1) which consists of a number p of vector poly-
nomials g, ¢ -, T, in which the leading coefficients are lmequy independent
follewed by & — p zerc-vectors. Now if we form |z, -+ z,| using the
notation of (2) with #’sin place of #’s, the term of highest degree is A+ =** ™
| #roxan ¢+ xTpo!, which is not O since the leading vectors ziq, #on, -« -, Tps8I€
linearly independent. But the rank of a sequence is not changed by ale-
mentary transformations; hence p = r and we have the following theorem.

TuroreM Y. If 21, 2, «-, 2 i3 a sequence of vecfor polynomials of rank 7

the set of vectors of the forngi(h)z.-()\}, the s being scalar polynomials, form

an integral set with a basis of order r which may be so chosen that the leading coeli-
ctents of its constituent veciors are linearly independent.
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"When a basis of an integral set satisfies the conditions of
its elements are arranged in order of ascending degree,
mal bagis.

Corollary. Y xy, @y, ---, . is & normal basis with the degrecs m;, < m, <

< Sy and if &, &, -, &, are sealar polynomials, then the degree of the

this theorem and
we shall eall it 5 noe

vector polynomial z = Z £ (£, # 0) is not less than g
1

Tueowem 2. If 2y, @, ---, &, is @ normal basis of an integral selaand
m oL M = o < o, the corresponding degrees, and if g, 1, -

) Y- W any
olher hasis with the degrees m < m, < .. < Ny, then >

O\
NS *
S, me Kmyy e, om, < o, .\

Further, the exponents my, my, - -, m, are the same for all normal buses.
<

Let s be the first integer for which », < m, 5o that n-.-'"‘sﬁ\n. < m,fori < s
Since (21, 75, ---, z.) is a basis, we may set

AN
= 2 G =227, .
S PAN

Here ne value of p greater ‘c-ha.nwéﬂLCI rlagu »2 missi feg ';?.]ilnce the degree n; of y,
is less than m.. This would mean th&ﬁz’the rank of y, ¥, -, y, was less
than s, whieh is impossible since theyform part of a basis. Hence m, < n,
for all values of s, o

If both bases are normal, it follows immediately that m; < =; and also
n < my, whence m; = n;, %l?{m is, the set of exponents m,, m,, -+ -, m, is the
same for all normal hases.)\ We shall call these exponents the degree invariants
of the integral set. o™

A

4.03 Elementa:y,s@t\s. I 20, 20, -+, 2(\) is a basis of an integral
set, but not n \eésairily & normal basis, the r-vector |ziz; --- 2, |, which we
call the deter«iﬁnanﬁ of the basis, is not identieally ¢ but may vanish for cer-
tain values ‘of \. If it vanishes for A\ = Ay, then z21(Ar), 2,(\1), - -+, 2(\;) are
linear] aépéndent, that is, there is a relation Z{z;(A) = 0; we may assuine
&1 # 0 without loss of generality. It follows that Zf2,{\) has a factor of the
form (A — A%, a > 1, and hence

2iziA)
(A - hl)“
Is integral; and, since ¢ #= 0, every element of (zi(A}, 2(\), -+, z,(\)) iz
integrably expressible in terms of (21 V), (A), -+, 2,(\)). Moreover, since

g‘l “12122“'39-[,

(A — )

s =

[2;32 ' zr| =
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the determinant of the new basis is of lower degree than that of the old and 80,
if we continue this process, we shall arrive after a finite number of steps gt
basis (z:(A), za(\), - -, z.(\)) whose elements are linearly independent for glf
values of . A set which has a basis of this kind will be called an elementary
integral set; and it is readily shown that every basis of an elementary integral
set has the given property, namely, that its elements are linearly independent
for every value of . These results are summarized as follows.

THEOREM 3. Every integral sct of order r is contained in an elementary set
of the same order.

N\
We also have A\
’\
Tueorem 4. Lel xy, @y, + -+, x. be a basis of an clemmtary se{ TIfr < n,there
exists a complementary elementary basis x, 1, -+, T, such that Ty o xa| #0

for any value of ) and this basis can be so chosen that a&\?fegwe does nof erceed
that of 2, 22 -, Zn
N

Tueorem 5. If z, 22 +++, 2, 13 a basis of a{c elemerztau set, there exists an
elementary matric polynomial X such that a'§~,= ‘Xe, (§ = 1,2, -+, 7).
Forletybea constanvf\qrgcggg'iv%ligﬁa%}éggrge value! of A is not linearly depen-
dent on z,, 25, - - -, - 50 that we doq fot have identically y = Ty, for any #'s
which are sealar polynomials. If Tor some value of A, say A, we have y =
ZEiri(h), the £'s being constanm then ¥ — S¢,x,(A) has the factor A — A and,
as in the proof of Theore Q, we can modify y step by step till we arrive at a
vector polynomial T, 4 \such that r1, @9, -+-, 2,, . 41 form an elementary
basis. The degree at eich step of this process does noi exceed that of the
original basis sine iny constant multipliers are used. This procedure may
be continued tilk n%asxs of order » is reached, which proves Theorem 4.

The proof oNheorem 5 is immediate; in fact using the bagis derived in the

proof of Theorem 4, X = 2 ziSe; satisties the required conditions and

1
[ X [X | #123 + -+ x|, which does not vanish for any value of A.
As a converse to Theorem 5 we have that, ¢f X ts an elementary matriz, then
=Xe; (1 =1,2, -+, v) s a basis of the elementary set (r,, xz, ~ -, T+

404 If 2, 2, --+, 2 i8 8 sequence of vector polynomials ot rank »r, we may
always assume & < n by merely increasing the order of the fundamental space,
if necessary. Setting z: = Z{e;, let us consider the matric polynomial

LIf the guestion of degree is not important, any vector polynomial satisfying this
condition may take the place of & constant vector.
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fm o e 0 -0 @

The elementary transformations used in §4.02 in finding a basis of the integral
set correspond when applied to Z to a combination of elementary transforma-
tions, as defined as §3.01, and because these transformations involve CQ]{lmnS
only, they correspond to multiplying Z on the right by an el y
nomial Q. Similarly, if Y eeme%a\r;: poly-
Z = zgi‘syir i = Ef{:ﬁ;‘, % ‘\ '
the proc:,ess.of finding a basis for g, s, -+, ya, whose rpﬁli i;: 7, ¢orresponds
to multiplying Z on the left by an elementary polynomial P,.

We shall now suppose that & = r so that Q1 = 1ithen P.Z has the form

w\/
Wi e WL.-HQ:;.\'" 0
wa  ce owmNO -0 0
wy.rw_c.lI?r.‘?ql'i_brar'y.o.l'.g.in
Zl = PIZ = We .:_:.':‘g ® o 0 e 0
0N 0 0 e 0
e
NPo oo 000 -0 0
We now bring Z, to j;hé'}l’éjrmal form of §3.02, say
\'\" &
\.%"” &y
N\:"\':. :. . .
\ ) PZ,Q = PPZQ = {r
0

| 0l
where ¢, ¢, - - -, t, are the invariant factors of Z (or Z;) and in doing so only

the first  rows and columns are involved so that

3) Qei=e;, G=7r+1r+2 - nh.
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Therefore, if z; = (PPy)~'e;, we have successively

PP.ZQe; = ties, ZQes = (PP ey = fuxy, (0=1,2, -+, 1)
a,_nd, if Q = ” TFij [[!

Qei = quer + @& + 0+ guen, 0= 1,2, -1, 1)
and hence

(4) $ixs = ZQB,‘ = ff1i¥1 -+ f2isy 4 - + Grils, (1 = 1, 2, . ?.‘)_

But from (3) and the fact that | @ | is & constant different from 0, it folows that
the determinant of the coefficients in (4) is also a constant diffgrent from @,
and hence these equations can be solved for the #'s in terms of tha e giving, say
S .
2; = Eb}.‘.g—‘l.x?. (1' = 1, 2, S ).-) ".,} \
where the b's are scalar polynomials. ,
Returning now to the case & > r, we see that, %mev\o can pass te the case
k = r by elementary transformations, the {’s .'],I'e\b‘tlll the invariant factors of
k x:\ /
Z = 2 2:%¢;. They are therefore also inva,rmﬁts of the integral set independ-
1
ently of the basis chosen to represent 1‘[ dnd so we shall call them the invarian!
factors of the set. :

We can now state th@&eﬂmmg;.tﬁmwgun

TusorkM 6. If &1, Co, - .00y are the invariant foctors of an integral set of
vector polynomials, we crmxﬁ\ﬁd’a busts of the form

N

" iz £z, -0y $ie
where 11, 25, -+ -, zPdefine an elemeniary sel.
N
4.05 Linear«e{emientary bases. We shall derive in this section a ecanonical
form for a Jasis of an elementary linear set. If
(5 N Ty, 2y, vy Tp B o= XN A Wy
is a‘hams of an elementary linear sef, it is convenient, though not necessary, to
assoclate with it the matrix

) AN — B = 2 08z = O gsS(eh + 1)
1
where g1, g5, +-, ¢- is a sequence of linearly independent constant vectors.

When this is done, it should be noted that multiplying Ax — B on the right
by an elementary matrix P corresponds to replacing (5} by the gimilar sequence
Pz, ---, P'z,. Multiplying on the left by P has no immediate interpretation
in terms of the sequence except when

Pgi: Ep"fgf (1 = 1,2 "',?’)

=1
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in which case we can write

* . .
Pl - B) = 2 948 2 Py = 2 9:8z;
i=1 i=1 i=1
and the set (21, 2z, ---, z)is equivalent to (5); when P is constant, the e uiv
lence is striet. ' quiva-
Instead of restricting ourselves to the matrix (6), we shall only assume to
begin with that AX — B is a linear matric polynomial of rank r < n. The
nullspace M of AN — B is then an elementary integral set, & normalized bagis
of which we shall take to be \
.\:\’

{7) @A) = apN™ + goam — 1 4+ - 4+ @i, {1 = L2 - m ).
From (4X — B)a; = 0 we have AN\

Aay = 0, Aay = Bam, o 0= Ba;!,mj\'\:

or,if weset gy = 0fort < Qor¢ > My, D
N

(8) Aau = Bai,, o ¢t = 0,1, 21"'}’"';' m; + 13,

We shall now show that the mto@m;ﬂwﬁ;féqlp&g.m—-, n—ri=01,
v+, mg) are linearly independent, Assume that a;; are linearly independent
for0 =1,2, -, p — Lj=101, g and (0 = prg = 0,1, -+, g~ 1)
but that

g—1 n\‘ P—1 m
(9} a;uq + 'ixp}fam' + E 2 :aijﬂ'if = {.
= i=l j=0

Let ¢ be the greatest xiali’;;e"bf J for which some ay; # 0 and let s be the greater
of s and ¢. If we geb.

&
\w: g—1 p—1 mq
(10) Ci:,@}:>—a+t+ 2 :am'ap.i—s+f+ 2: z:al‘Jﬂl‘.r'—l-FlJ
"\.,:' je=0 =1 j=0

'"\ w4
then N 0, ¢, = 0 and

=1 my
1

g=1
N
Co —1 = Qp, g~ + 2 ;am'an.i"l+ E : E :Ofifai.i—-l:

im1 =1 j=1

which is not 0 by hypothesis, except perhaps when ¢ = 0 and every ay; (j = 0)
in (9) is 0, which, however, is not possible since by Theorem 1 the leading
coefficients a,o in (7) are linearly independent. Also from (8) it follows that
4c, = Be, _), and hence '

(1 I O e I
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is & null-vector of AN — B of degree less than m,. But every such integral
null-vector is linearly dependent on a), as, --- » Gp ~1 With integral coeffi.
cients, aay

(12) N = D vWa);

and this gives
r-1 p-1
Com1=c0) = D7 Vi0al0) = D) 10)ims ~
1 1
which is impossible since ¢, _, is obtained from (9 by lowe;-i{ié"%he second
subscript in each term and o such subseript greater than miCAN oceur in any
a;.  Hence the a;; are linearly independent. RO

In order to simplify the notation we shall now set R 0

(13) (I.',:=Q€;: (1'= 1,2 "';n_r;j=01 i):"'; m;)
NY;
where Q is a constant non-singular matrix and {}M\are fundamental units rear-
7t

ranged by setting, say, ¢, = el when k = Z (mg+ 1) + j + 1; as before

. 2N E=1 .
e; = 0 for j < § and jw-dhraumwmléhote the space defined by the €;
by D and the complementary spaes, by D%; since the bases of 7, and o,
ean be chosen as sequences of fundariental units, they are reciprocal as well as
complementary. SN

We return to the particl%{; “¢ase in which A\ — B is given by (6). Corre-
sponding to (12) we deﬁne’a ew set of vectors w by

(14) \w. =Qxn (=12 -, 1)

and when this ia..di,}é a normal basis of the nullspace %, of (AN — B =
ZysSw: is given)by

(5 BEeNid et el (=12 o, 0~ 7).

™

We «Qéivé seen in §1.10 that by, b, ---, b, _, is the space reciprocal to

n ¥
Wy, Wy, -, w.. Now in 9% the Z m; vectors
1

(16) f;ﬁ=gj._1—)\g; =12 - n—r;j=1,2 -, m)

are linearly independent; and they form the set reciprocal to {14) in 9, since
Sfiby = 0 for all 1, j, p and the sum of the orders of the two sets is Zm; +
{n — r) which is the order of M. Hence the total set (1, g, + -+, w,}recip-
rocal to (by, by, -+ -, by _,) is composed of (15) together with ¥%. We shall

call this form of basis a canonical basis of the set (13). We can now state the
following theorems.
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THEOREM 7. A linear elementary set-of order r has a basis of the form
(1?) g? (J =-1} 21 " '!m):g;' =i, 1 + Aaii (i = 1’ 21 tt ':v;j = ]'J 21 Ty mi)

where the constant veclors g3, a;; are Linearly independent for all j and i and the
inlegers m; are those degree tnwvariants of the reciprocal set thal are not 0.

We shall call each set g} (j = 1,2, ---, m.) a chain of index my, and define
the integers mi, ms, ---, m, a8 the Kronecker invariants of the set. A basis
of the form {17) will be called canonical.

THEOREM 8. Two linear elementary seis are similar if, and only if (hey have

the same Kronecker invariants and the same order. A
oA\

It should be noted that, if « is the order of the set, then O

N

{18) m. 2 m;=r,m-+ 2 (m: + 1)-< n,y:_<: .
1 1 AN
If r = n, all the Kronecker invariants are 0 and théré\ire no chains in the basia.
If 2y, 23, ---, 2+ is a normal basis of an elementary linear set, the first m being
constant and the rest linear in X, and ¢}, gids'd canonical basis, the notation
being that of Theorem 7, then cleatly theset' g% (j = 1, 2, ---, m) is strietly
equivalent to (z;, 2, -, 2m) SO HONBHANTRG F&etdrs have the form

(19) g = wh ul + !

where u | and v;: belong to {z1, 25, -, 2.} and the wﬁ are constant linear combina-
tions of 2w L1y, "+ -+, 2 Siqpi;;a canonical basis is also normal,

O _
(20) 9? (J = 1: 2: \\m)! w; (3 =12 .- V;j =1, 2, -, ml')

is a normal basis strietly equivalent to (21, 2, ---, 2). Now (19) may be
written O\

@) wi =@ ul — M} =001 — 4 + Mai, — v)) =z} + b]

where b}, v—‘—\v; _1— u! is a constant vector of the linear set (g}, g3, - - -, gn) and
(22)..\“\ z;: =a.~,,-_1—vf-_1+)\(a;,-—v§).

/ . .
Hek (22) together with the g% form a canonical basis which from (21) is strictly
equivalent to (20) and therefore to (2, z» -, 2.). We therefore have the
following theorem.

TueoreM 9. Every normal basis of a lincar elementary set is strictly equivalent
o some canonical basis.
4.06 Singular linear polynomials. Let Ax 4 B be a matric polynomial
of rank r < n. Its left and right grounds are linear integral sets of rank -,
and by Theorems 3 and 7 we can find canonical bases in terms of which the
vectors of the two grounds ean be integraily expressed, say

(23) 2, 22, ccc, 2, and w0, W, o, W
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respectively, where the first o z’s and 8 w’s are constant and the rest linear in A
When A\ + B is expressed.in terms of these ‘bases, then, remembering that no
second degree term can appear, we see that it has the form

« f r—a @ a r—8
(24) 2 2 (hoh + ki:)zis'wi + 23 2 kayi, ZasiSw; + 2 Zki.ﬁ+:‘2i8wa+,-.

i=1 jm1 i=1j57=1 i=1 j=1

The row vectors

g r8
(25) pi = 2 (hah + kiw; + 2 Rigrmwps; ((=1,2 . 4)
i=1 'ﬂ i=1 N\
(25”) pﬂ +i = E kﬂ 4+ &y 3’10,‘ (1 = ]-,,'\2“;\’ T = a)
i=1 o\

form a set of r linearly independent vectors and, since th:e."};get (25"") depends

only on 8 w's, we must have r — o < 8. Setting vy =)'+ 3 ~ r we may

replace wy 1, **, We BY Pas1, -+, Prin (23) withou{:\Hestroying the ¢anon-

ical form of the basis. A similar change can be yiate independently in the
2 A\

z basis by replacing 2, , ; by 2 ki s .,_,zg“‘“(g'\;: L2 - r—8=a—m.

1 \®
When we assume that these changes have been made to begin with, we may
take in pla,ce of (24) www,dbrggli,brary.org.in

3
al

o ) .'.’:" r—a r=3
26)  AN+B = D) D (i + RS, + D e S 4 + D 2y Stwg s,
iml =1 < i=1 =

T\
Figure 1 shows schematically the effect of this change of basis. To begin with
the coefficients in {24) mﬁr be arranged in a square array AR of side r; the

ok 8 r at@
& B c D
N\
Ne” ¥ -
O E |\F G H
N® )
<\ Ne”
X
J K L M
Pl
N P Q B
e+ p

Fra. 1
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first double sum corresponds to the rectangle AL, the second to JQ and the
third to CM, and the rectangle LR contains only zeros. After the transforma-
tion which leads to (26), the only change in the scheme is that in JQ the part
JP is now zero and the square K@ has 1 in the main diagona! and zeros else-
where, and CM also takes a similar form.

If we set

?;+i = 2Zg 4+ + z (hif‘r+|'7\ + ki.?+i)z1' (?' = 1:21 Ty T — a)

i=1

T
w;+l' = W4 + E (h'-f“i".-ilfR + :IC-F_'_““,:)?.{,‘_; (i = ]J 21' trF _h}
’ i=1 .\:\
then zi, ««+, 2, 2Zaq, -+, 2, and Wy, «++, Wy, oy, <+, wi are still Elementary
bases of the right and left grounds, and in terms of them (26} be.é;prhes

T r—u r—=g R1s.
D7 Rid + kedeeSw; + D 2l oS s + D%y 30h 4
i=1

¥, i=1 T

The number of terms in these summations after su:m‘ﬁ&fg forjisy + (r — a)
+ (r — B) = r. Hence the rank of the square\artay huh + ki (4, i=12,
-+, v} i8 4 and by s change of variab,}qu_ct@fzéggmaﬁyfﬁré“r—r N, if necessary,
we can secure that the array &, is also of rank #.

The transformation just employed distutbs the canonical form of the basis
and we have now to devise a different-transformation which will avoid this,
Let us set in place of wy, wy, +--, 104,

AN
w;\'ﬁ‘wJ - E Pi. =yl (J = 1) 2’ "ty 7)
N\ f=y+1
where the p’s are constafits to be determined later, and for brevity set also
“\k = hize ki = ks =12 -, ;
.:\\,, i ‘Z:; i%iy Kf Z} § {J y 8)
since the ran}é of ko (6=1,2 -+, v)isy, the vectors k&, ks, -+, &, form a
basis of (z}z 7, -, Zy). After this change of basis the part of the first double
sum (ef. [26)) which corresponds to ¢+ = 1,2, -+, y; = v + 1, ---, g1is
g ¥
(27) > [h,-?\ F ki + D) puioaha + k,):l Swo;.
i=rtl £=1
Consider now a single chain of 2's of index s which by a suitable change of
notation we may suppose to be za 4.1, Za 42 ** 'y Za +.; we shall seck lo deter-
mine the p’s so that the corresponding part of (27) shall become
Y4
(28) D) @mrms M) S0,

f=vtl
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the g’s being vectors in the spade (z1, 25, « -, z,). Egquating corresponding
terms in (27) and (28) we have

go= ky+1+ 2 Paky h = hy o1 + 2 poke = kyio + 2 Pk
i [ £

Jam1 = My + 2 Poa—ihe = kyyp, + 2 Pekny g, = Ryt + 2 Puhe.
: t t

Choosing pu (¢ = 1, 2, ---, v) arbitrarily we define g, by the ﬁrst’e\quat.ion;
then the second defines p sinee the vector #, 4, + Z Pukhy -»—‘\:ks, +2¢an be
t S\

expressed uniquely in terms of the basis (ks ks, -, k,);.and the remaining
p’s are similarly determined in succession, while the las{\equation defines i
If we now in our basis put in place of z, 4 ¢ "

za+£=z¢+l‘+g"—l+mg{ (3.-_:1!2!"',6'}
.
and combine the corresponding part of (27‘)\Mth 2 Za 4 iS%y 4y, the two
W i=1
” www.dbraul'brgl;y:’brg,jn

together give E Zg + 5wy ¢ and the€™new basis is still canonical, We then

i=1

treat all the z chains in the same v@é,j' and have finally in place of (26)

T o 8 r~e
7 Gan + k;f)z;Sw"-\{F-.‘z\ D G + koaSuwl + > 204 Sw,
i,7=1 =1+l j=1 i=1

N

N r—4
‘I‘~\ +237+3'Swﬁ+i-
R i=1

O\

The chapgé"m the bases used above have replaced the coordinates Ay, ki
by O for the'range ¢ = 1,2, -+., y: 7 = v 4+ 1, ---, 8 and have left them
wholly @haltered for ¢ = 5 + 1, -+, a;j = 1,2, -+, v. We can therefore
intérchange the réles of the #'s and w’s and by modifying now the w-chains we
can make these coordinates zero for the second range of subscripts without
altering the zervs already obtained for the first range. Hence it is possible

by a suitable choice of the original canonical bases to assume that (26) is
replaced by

¥ a i)
AN B = D) (hh + ki)zSuw; + D0 D) e + kazsSuy

(29) $,i=1 i=y+l j=v31

rea r—g
+ E :za+isu'~r+u‘ + 2 : 2y 4+ S 4 1.

i=1 i=1
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Here the first summation can be reduced to a canonical form without affecting
the rest of the expression; we therefore neglect it in the meantime and deal
only with the remaining terms. This is equivalent to putting v = 0, and in
making this change it is convenient to alter the notation s0 as to indicate the
chaing in the bases.

As in §4.05 let the chains of the z and w bases be

J‘;-1+Af; (j=1:2)""33i;i:1921 "'||"I)
and .

gt ME @=12 - tuyp=12 -, ) N
respectlvely, and denote the constant vectors of the respective, b‘z@es by 2
and w; where 1, §, p, ¢ take the values indicated above since, when ¥ =0, ue

have z s§i=r—a=4 vt =r—f3=a We ha}:e then to determine

1 ¢
a canonical form for the matrlx \
(B0) D) Gin+ kiDZSw) + 2 (fi -1 +UQS'“' + Z/ 2S(g%-s + M%),
i./,0.q

and in doing so we shall show that the firsh summa.uon can be eliminated by a
proper choice of the hases of tH& ‘x'éHQi’héthf ary.org.in

It will simplify the notation if we géhsider first only two chains, one of index
s in the z-basis and the other of index ¢ in the w-basis and, omitting the super-
scripts, choose the notation so that these chains are fo + M, -+, f, =1 + A,
and go + A1, ++c, ge—1 + NN We now modify these by adding ¢, —, + Aa,
to f; -1 + Af;and b; -(‘Ab to gi —1 + Ag: choosing

.IEC:,,:H ‘,\('j,~_—0,1,...,3)’ b“Eﬁuw: =01, ---,

i=1 £ ) i=1

9, . ) .
in such a w, ya& to eliminate the corresponding terms in the first summation
of (30). I&b this we must choose the a's and 83 so that

(31) hfﬂ-\':-_:.;aij'—i_ﬁl'f} k:’iz{ri‘f-—l"%ﬂgi-l.} (1= 1!21 "'rt;j‘: 1|2| T8l
Fo’l\jb" 1 this gives aq, j —1 = Ai, 7 -1 — Bi.j —1and hence if Ly = &y — hii—
we may write

(32") ki =la=ap+ Bic1n
(32”) le;‘ = 5-'_1.;' - Bi,i—l

If we give ap (@ = 1, 2, -+, t) arbitrary values, (32') defines 3, fur ¢ = 0,
1, -+, ¢ — 1 and leaves 8, arbitrary; then j = 2 in (327) gives Jn for ¢ =
0,1, -++, ¢t — 1 and leaves 3, arbitrary, and so on: antl when the 3's ure found
in this way, certain of them being arbitrary, the first equation of (31) gives the
remaining a’s.

(i=1,2 - Lj=23 -, sh
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Combining every z chain in this way with each w chain in turn, we finally
eliminate all the terms in the quadruplé sum in (30), and (29) may therefore,
by a proper choice of the two bases, be replaced by

@3 .
z i 1 i N 3
Ar+B= E (hek - koig)zsSw; +E (fi-1+ MSw; + 2_; 2eS(gT -1+ MY)
t,j=1 i, Paog
where no two of the linear sets
(34’) . (313321 Yy z‘r)! (ft‘l:fis ”'Jf:.'lliz Lz -, Vl)r N\
(-z{’,zi’, "':zjl}p!?)= 1,2, '”r"ﬂ) N
AN
have any vector in common, and also no two of - > M
(84"} (101, Wy < * 7y y), (?.Uf, w;l t w:\'l i=1, 21(‘1 ),

(gﬁ, gl gfp}p =12 - V?)sz\'\

have any vector in common. O
We shall now for the moment suppose that thérder n of the fundamental
space is taken so large that we can introduee \{ac:tﬁrs 22 (p=1,2 -, v} into
the third set in (34') without causing the three spaces to overlap, and also
wi(f=1,2 -, n) into@wa&mﬂi@ﬁ‘iﬁﬁggf@. As a4 matter of convenience
we can then find two constant non—ginéﬂiar matrices P, € such that
Pz=¢; = Qui, Pfi &e] = Q! Pz = eptr = Q'g}

i

AN
where the range of the aﬂiieg‘is’ as in (34) and where

L % ‘_l
6 = e v+ D e+ DG+, et =,
.'\'..’ a=]
8 < =
R=y+ DD+ Dtk Dbl
) i=1 a=1

Y
3

.and, whiep this is done,

N
(35) PAN 4+ B)Q) = 2 (hih + FipdesSe; + 2 iy + ?\ef-)Ser
i i=1 i 7

4 DT TP SEET 4 i),
g

Thl‘s n'fatrix is composed of a number of blocks of terms arranged along the
reain diagonal, the remaining eoordinates being 0. It must be earefully observed
however t-h‘at, owing fo the introduction of the vectors 2, wl and £0 the fact
that a chain of index s depends on ¢ + 1 constant vectors, the total number
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of rows and columns employed is greater than the rank r by the total number
of chains in the left and right grounds.

The first summation in (35) gives a bloek |} k;\ + ki || of ¥ rows and eolumns.
Each chain in the second and third summation gives a block of the respec-
tive forms

01 0.--00 00 0---0 0
0 a1 0 0 1 »0---0 0
00 A--0 0 01 A---0 0

(86) e I
................................ N
00 0.2 1 0 0 0---x 0 .
00 0---0 X 00 0---1 A D

If we take A + By in place of AX + B and caleulate the invariant factors
these forms show that we obtain the invariant factors {Jf(E (hih + kou)eiSe;

together with a pumber of 1’s from the blocks of type (36’), the number ¢con~
tributed by each being one less than the numbgrt}frnws it contains, that is,
the index of the corresponding chain. This.gives the following theorem.

Turorem 10.  Two matric polipiosbelbrayy Bigand Ch + Dy are sirictly
epuivalent if, and only if, they have the'auséc?}z'e tnvariant faclors and their respective
right and lefl grounds have the samngmneck&r invariants.

That these conditions are neeegsary is obvious; that they are sufficient follows
readily from the form (33} @dérived above. In the first place, since the Kro-
necker invariants are thésame for both, the second and third summations in
(33) have the same,fgrM for both and are therefore strictly equivalent by
means of tra.nsfom'la@,ons which do not change the terms in the first summmation,
Secondly, the firstsummation in both yields the same invariant factors since
the number p\fib’% due to the remaining terms depends only on the number of
chains, whiehiIs the same for both; hence these summations are strictly equiva-
lent und,(Because of the linear independence of the constant vectors involved,
the equivalence is obtainable by transformations which do not affect the
remaining terms.

When the first summation in (35) is in canonical form, we shall say that
AX -+ B is in its canonical form. This is however not altogether satisfactory
since the space necessary for this form may be of greater order than n. If
v is the greatér of v, and ry, (33) shows that the minimum order of the enveloping
space is ¥ + Zs; + 3t, + ». A canonical form for this number of dimensions
can be obtained as follows. Pair the blocks of the first and second types of
(36) till all of one type are used up, taking the order of the eonstituents in, say,
the order of (36);: then in the composite block formed from such a pair diseard
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the first column and alse the row which contains the first row of the second
block. This gives a canonieal form for such a pair, namely,

1 0:--00600---000
x1.---000©O0---00
0O x---000O0---020

0 0-100 000

(37) 00--2 00000
0 00 1 A 0---0 0 O
0 0---0 01 XN-—-00 O
0 0«--000 0---x 0 )

NO--0 0001 A OV

A

If the number of chains in the left and right grounds js\ﬁiért the same, there
will of course be blocks of one of the types (36) left m{ﬁl‘a&ed‘

."\ 4
‘€%
P\
N
O

www.db raulibra.y\gz:\&:g,jn

N\
.
N\
{N\
N
¢.& &.}
(x
PR
N/
9,
(O
N\
Y""
N
\
N
S
N/

Q.



CHAPTER V
COMPOUND MATRICES

5.01 In chapter I it was found necessary to consider the adjoint of A whichiza
matrix whose coordinates are the first minors of [ 4 | We shall now consider
s more general class of matrices, called compound matrices, whose coordinates
are minors of | 4 | of the rth order; before doing so, however, it is codivenient
to extend the definition of Szy to apply to vectors of higher grade‘.s\,
&Y
502 The scalar productr Let z; = Ziye, ¥ = Znue (@‘,’;.}1, 2, -} be
arbitrary veetors, then, by equation (37) §1.11 we have (™
s

E M\
{1 | 2322 -0 2| = [2}/ | Ev, Eae -0 Eriy || 08 -0 €]
1
and henece it is natural to extend the notion c{'{:}}é sealar product by seiting
NS
(2 Slzwe - |y - ywbﬁd;;qlilb?m&ysm-g_.‘n i, I} muames, oo e |

We then have the following lemma whjéli becomes the ordinary rule for multi-
plying together two determinants when r = =.

Levma 1. C\\
(3 Slzmza ™ zilyye oy ] = [ Szl
For8|xzre --- x4 L\f'\‘%{]@}, e, | = |&sbas, 0 Eri, |, hence

Slaan 0 | yes - oo | = D2 mal b o fnl
\\~ i
"\':‘:’;: 1 (2 7-'1;151«'1) by, - Eni b= | Soiys By b ];

w\: 7
\"
again\ 4

Slawe -+ 2, || Yugher, -+ €| = ZH%SWI v e || e o g5

= Z foiy | STy b2y - sy |

= | Sz Szays bsi, +-+ Eei |-

The lemma follows easily by a repetition of this process.
The Laplace expansion of a determinant can clearly be expressed as a scalar
product. This is most easily done by introducing the notion of the comple-
63
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ment of a vector relative to the fundamental basis. If 4y, 4z, - -+, ¢, i8 a sequence
of distinet integers in natural order each less than or equal toz and ¢, 1.y, -+, i,
the remaining integers up to and including #, also arranged in natural order,

the complement of | e;e;, -+ ¢ | relatively to the fundamental basis is
defined ag!
4 i ity *r B | = (-1 Hatrlrt D ! €irp1 Ciryy "7 iy
and the complement of | 22, -+- z,| by
* ’ ’
N\

(5) |22z« 2, ] = [Z; I Evilasy, - Eei | €i8q, - ey, \c;

3 N

. e A\

which is a vector of grade n — r. o\

Laplace’s expansion of a determinant in terms of minors of order r can now
be expressed in the following form. 0

NS
LEenya 2, ¢
(6) Sijame - 2ol 4 @rys e Ta| = |«£’1f§u°--5m|=IS$.-eji
= Sln il e el o (17e e e e o ]

www.dbraulibrary ‘rg in
Further as an immediate consequence f {5)"we have

.',

LEvMa 3.

(7)) Sloze -0 x| v "“Q”yrir: =8|zxs - 2 Ny -0 oy

5.03 Compound matrices\\ﬂ A = Zayey;, then, as in (1),

]Azlen ,'f\:. .‘;ix" I = 2* | 'Eln te E"Jr ” Aeh e Aefr |'
N (i)

:“\.‘.
But de; = E\ae,e{; s0 a second application of (1) gives

I_A&AJ}Q <o Az | = 2* Z*l IR I “ Qi “ Gi,j,.HEi. s
N/ o

But the determinants [£y4 --- &, | are the coordinates of the r-veetor
| 2125 -+ z,[; henee | Az, --- Az, | is a linear vector form in | zizs -+ ]
in the corresponding space ¢f () dimensions. We denote this vector func-
tion or matrix by C.(4) and write

8) VAziAzg -+ Az, = C,(A) | muze -+ 2. ).
We shall call C,(4) the rth compound of A. Important particular cases are
8" Ci(4) = 4, C.{4) =|4],

! The Grassmann netation cannot be conveniently used here since it conflicts with the
notation for a determinant. It is sometimes convenient to define the complement of
lews -+- ¢, a8 1.
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and, if k is a scalar,

8" CrlB) = I
THEOREM 1.
For
| ABx,ABzy - - ABz,| = C{4)|BxBx: --- Bz.|

i

CT(A)CI'(B) l Xy Iy I.
Corollary. If | A| # 0, then

(10) (O] = C(AD. \ .’"\
THEOREM 2. \ \)
(1 1O = C4%).

For S |mas -+ 21 CAA) [oge -+ w1 = | Smidyy L@ISA 2|
= S| A o Az we =St '%lcr(A’)lzl - T

A7
Taporew 3. If A = 0, aiSby then N\
o1 www . dbra uli.b’lzary .org.in
(12) C(4) = " e Lo S babs - Bl

(:)
This theorem follows by directs sub’stitution for 4 irr the left-hand side of (8}
Tt gives a second proof for Th‘&orem 2.

If r = m, (12) eonsists '%&one term only, and this term is 0 unless m is the
rank of A, a property whl might have heen made the basis of the definition

of rank. In part clﬂar if X = eilry, ¥ = y:Se;, then C{X) =
> :

lews v~ erl .’.'F;CCQ N A C(Y} = |yye " cyr|Slee o el 80 that
CAXY) =y Nty oo e |8 aEe 0 T gz« Y| Sleee o e.|. But
XY = \2", e:SzrySe; so that CAXY) = | Szayi ljcea - e8] ees - erl.

i

Comparing these two forms of € AX7Y) therefore gives another proof of the

first lemma of §5.02. .
If we consider the complement of le;A:rz A:r,,.\ we arrive al a new
matrix C7(4) of order (7) which is called the réh supplementary compound of 4.

From (7) and (12) we have

(13) | Awday - Az, o= D) @i o I A
C‘r(A_) l Iixy ‘c

and derive immediately the f ollowing which are analogous to Theorems 1 and 2.

* .0

i
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THEOREM 4.

(14) C{AB) = C"(A)C (8.
THEOREM 3.

(15) [C )] = C(4").

The following theorems give the connection between compounds and supple-
mentary compounds and also compounds of compounds.

THEOREM 6. O
(16} Cr(ANC, _(A) = |A | = O~ (A)C (A, \x\

This is the Laplace expansion of the determinant | 4 ] Lsmg equation (6)
and setting |e| for |ee, -+ en] we have

1A|Sl$x~’ce---xrlclxr“---xnl—]ms*]} o lle]
=8| Az -+ Axr.|]e| z’\\;
=8| Az - Az [ |A~"5r+1 \ Az, |
= SCr(4) ! \z\.}\\!;\" ;lbl aulflbrf'myor)g In:fr +1 00 e |
= S|ai oo 2| CANG A) [ 200 o

and, since the z's are arbitrary, the first part of the theorem follows. The
second part is proved in a similar fashion.
Puttingr = n - lin (']{ﬁgi.ifes the following corollary.

Corollary. (Y adjd =C Y4
THEOREM 7. 1‘} ‘
;\n (ir;—'l)
(17) NO7 Te@l=1a T = (o

For from. ilﬁ) with A’ in place of 4, and from the fact that the order of

C.(4)is (}), we have
V "
417 = fer@)e, - @0 ] = o) 110, - (4|

and, since | 4 | is irreducible when the coordinates of A are arbitrary variables,
it follows that | C7(4) | is a power of | 4 . Considerations of degree then show
that the theorem is true when the eoordinates are variables and, since the
identity is infegral, it follows that it is also true for any particular values of
these variables.

THEOREM 8.
(18) [4 l( i )Cs(cr(A)) =4 I’C“:)_S(C*"(A))

(19) 1417 e = 14 1 e, )
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Using (15), (16) and (17) we get

oucr - A e ) = 1oy | = 14
therefore _
[ A ](", ) 0CAA)) = CoCo AN~ (AN)CH — (C = 7(A))
C(C{AYC ~ (A7)0 — 4 (C — 7(4))
= C, (1A [)C—+(C*~~(4))
= | 4 ['C = +(C"~ r(4)).

Similarly
CCn— LANCLC(A) = (1A D = (41 Oy
. N\ “

N/

and therefore

a1 () = €7 (- 40Cn - DO

1 (A) ] AN

- 1417 oucu@y’
An important particular case ig Ey(@naiihirFotgdul ~ 'C* ~*(4) whence
(20) C.(adj 4) = C(C*~ 1€é{jj1.= | A |10 —+{4).

504 Roots of compound matrices? If A has simple elementary divisors
and its roots are A, Ay o, As; the corresponding invariant vectors being
4. Gy, '+, dn, then the roo:t’f{fEf C.(4) are the products Aok, **- \i, in which
no two subseripts are the’s}ﬁe and the subscripts are arranged in, say, numerieal
order; and the invarianhyector corresponding to Mde * - Mir is] @i@s *+ v Gir l.

For there are (7) distiniet vectors of this type and

Cr(A) sai‘%n\;‘:' airi = IAa'ﬁ v Aa’:‘,] = h‘,l EEE Al'r l aily " iy i_
Similarly'j’f}r Cr(4) the roots and invariants are XiAi c°c e and

1 0, ';"‘;: iy l(-.
It4ollows from considerations of continuity that the roots are as given above
even when the elementary divisors are not simple.
Y
5.05 Bordered determinants. Let 4 = lasil = Z a;Se, 4 = 2 i€
i=1 i
be any matrix and associate with it two sets of vectors

i=1 G=12 57
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Consider the bordered determinant

@ Gzt Qg En e Ea
th G2z G £12 Er
.............................. 4 X
21 A, = _

( ) [ P P e 2% Elﬂ e Ern Y; Of
1 Me Mma O 0
.............................. ."\
7;1'1'1 Tr2 rr Men 0 bl 0 ’.\:\’

where + < n, and 0, is a square block of 0’s with r rows ar}dx.(?olumns.
If we introduce r additional fundamental units e, , ™%, €. 4 -, A, can be
regarded as the determinant of a matrix 3 of order s \-{— r, namely,

n ntir

A = ZaSe.+2 gSen+;+2sq3*,Sy, 2 cSd;.

1

If now we form | 2| = S8} &’hmﬁ}ahg ]bilg in §3.03, we have

*
e 0 = e [ = 1,2, 4 20
(i) N
In this form any | e, -+« e ] w}nch contains more than n out of a;, -+, 4.
xy, -+, 2, is necessarily Q;{also, if it does not contain all the z’s, the corre-

sponding |d;, - --, d; ‘\ii will conlain more than n out of ¢, ---, e,
¥, ‘-, Y- and is cor}se}uently 0. We therefore have

Cﬂ-i—"(?();:}": ' 1(1‘{[@{: e ﬂ-i,,_r-k"f]xz Tyt By -+-'r§
xt\w {i}
7\

%.&"éi,ﬂi, sl et YrCas1 ccc Casr| (U= 1,2, oo, n)

and hg{ﬁ;é, passing back to space of n dimensions,
'"\ W ¥
[A)= Z/ Slellay, <+ an_z - [ Sleq - ey - yellel
i

:E*S]II e x"Haﬁ A a’in..r]"S]eﬁ e ein—r!C‘y] cr y"'
=8z 0 2| C T A) [ oyl

This relation shows why the bordered determinant is frequently used in
place of the corresponding compound in dealing with the theory of forms.

5.06 The reduction of bilinear forms. The Lagrange method of reducing
quadratic and bilinear forms to a normal form is, as we shall now see, closely
connected with compounds.
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1f A is any matrix, not identically 0, there exist vectors z,, y, such that
Sy Ay # 0; then, setting 4 = 4, for convenience, the matrix

SA4 . x

Ay = A, — Ay, =1L
* ' i S.T]_j:l 11

has its rank exactly 1 less than that of A, For, if 4,2 = 0, then

SA'z; - Sz A
Aoz = Az — A & F A — Ay, DD
: ’ b Sz dun W A
and, conversely if 4.z = 0, then
A Q|
Az = A i:}xl i = kA, a
Sz 1‘119 AN

say, or A:(z — k) = 0. The null-space of A, is therefore obtaﬁc@d from that
of A, by adding y, to its basis, which increascs the order Qf thls gpace by 1
sinee 4. = 0.
If A. = 0, this process may be repeated, that is, ther’{é;}xiat T3, ¥z such that
Sz2d.y2 # 0 and the rank of
SA 21}0 \"

;4_3 = ‘42 - JigyEW

WW W dbrauhbnary org.in
is 1 less than that of 4;. If theyank of A Is’r, we may continue this process

by setting

bA 22:#
122) Asypr = 4. - AaJs

bT;Aaus
where Sz.A.y. # 0 and A, =i~>{1\ ‘A, .3 = 0; we then have

\ % SA g . g
(23) A A it Z %,

’\3 a=1

(3=1:2; "',i-“')

where %, = Ay, %—é 7; is a matrix of rank 1. Generally speaking, one may

take m, = ¥, & "t is of some interest to determine when this is not possible.
If SzBzx = 0 for every z, we readily sec that B is skew. For then Se.Bes
= Se,-B&f”% Ste, + €)Blec + ¢,) = 0 and therefore

= S(e; + ¢,)Ble; + ¢,) = SeBe; + Se;Be; + Se:Be, + Se,Bey,
that is, Se;Be, = —Se,Be; and hence B” = —0B5. Hence we may take z. = ¥,

so long as A, = —47.

507 We shall now derive more explicit forms for the terms in (23) and show
how they Jead to the Sylvester-Franeke theorems on eompound determinants.
Let x4, 2, .-+, 27, ¥4 #% -+, y" he variable vectors and set

(24) J = 8|zae® a2 Crpnldd)  yyy® - v
=8 ; I!xle verox” : {Asys‘4syl e Asyr i;
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then from (22)
J =S|zt -2 |[dyde iyt o A, py ]

= | Sz, Ay Szl d, - Szrd, Lyt

fi

If the z's denoté rows in this determinant, the first row is

SJ:,A,?J_,, Sz.4, + lyl; Tty Sz.4, + iy

each term of which is 0 except the first, since x, lies in the null-space of 4’ L

and Sz, d.y. = 0. Hence

N
(23) J = S dy, [ 824, Loyt - Szrd, 4y O
¢\
and therefore from (24) AN
(26) Szl o zr | C oA |yt -+ y’(f"};: )

= SzAgS[at - 2| O+ ) |8
Repeated application of this relation gives \ \dg
(27) Slwazsss o zq oixid® - fICrtJ\('A\?fly. S Yo -yt oyt
= Sz.AySx, .4, 4 iﬂww.ldbl‘duh;iﬂiv’a#&‘};}}‘}gdn R TERCIELEER
g P 1);{"?}:1 eyt

<

a partieular case of which is N
(27) Stz - 2, &10A) [y -+ y, ]
\g‘sgx.Alyl SR & NURY; VR TR T2
To simplify these gnici.‘similar formulae we shall now use a single letter to
indicate a sequenceNdof vectors: thus we shall set Xewwt_ for maze oy ---

Zy 4 ¢ —gand Yf,{ﬁ}fjlyz w0y also Cy, 4 for C,(4,). Equations (26) and (27)
may then be"{.{ritten

(263) “\“;S': xaxr | Cr +1, I y,Yr | = S:cs.‘isy,S E X | Cr_ 41 I Y [,

o &
g1

@TVS| o syt X7 | Crp| Vv ¥ | = I sedws i x 100,000 771

We get a more convenient form for {26a), namely
(28) S1Xy X7 Crpi_yara| Yo V7|
= 82 AYS | Xoi1, X Coptee oy | Varr 77|

by replacing r by r 4+ t — s and then changing z'z? -.. z-+¢-  into
Zo4are- zaxl oo 27 along with a similar change in the y's. Putting s
= 1,2, --+, tin succession and forming the product of corresponding sides of
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the equations so obtained from (28) we get after canceling the common factors,
which are not identically 0 provided that r + ¢ is'not greater than the rank of 4,

t
29) S{X X" |Urqe| Y. Y| = HS::A.-y‘--S[X"]C,_g+1[Y' Iy

or rrom (27°)
@0 S|XX|Cowil VY [ =8SIX]C|YNSIX[Cr e01] Y]
which may also be written in the form

SIX X Cop | VWY _ O

(309 Ly 15 ArcAD AN N

in particular . O
SIXx$ICz+1(A)] Yyl _ ““

(31) SIXICGAI Y SxAt.{;l{k

This gives a definition of 4. 4 1 which may be used in plaée of (22); it shows that
this matrix depends on 2f vector parameters. Ihis’more convenient for some

purposes to use the matrix A® defined {,\
www. dbray Ll:jra’r .org.in

(32) Szdwy = S| Xx|Codi(4) | Yyl
From (31) we then have Szid, iyt & Szid9yi/8 | X:|Cy| Y| and there-
fore from (30) N\
(33) ko |S2a@yi _slxicdo)|y|

SIXG[CIY. [S[X ] CLA) [ Y]]

L\
Hence ¢
20 o slxleay ] v]

34) S| XA Crv (M [VF| = QO @ 7, 7

$)
which is rea&l& recognized as Sylvester's theorem if the z's are replaced by
fundamental units and the integral form of (33) is used.
O\
5.08\, Juvariant factors. We shall now apply the above results in deriving
the normal form of §3.02. We require first, however, the following lemma,

LEmma 4. If A(A) s a matric polynomial, there exists @ constant veclor y and a
vector polynomial x such that SzAy is the highest common factor of the coordi-
nates of A.

Let y = Zy.e; be a vector whose coordinates are variables independent of A,
Let oy be the H. C. F. of the coordinates of 4 =!I aq, || and set

A= ChB, By = 2?},5,@8, = EB;B".
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There is no value A of A independent of the #’s for which every 8; = 0; for if
this were so, A — A would be a factor of each b;, and o, could not then be the
H. C. F. of the a;,, Hence the resultant of 81, B, -~ -, 8. a8 polynoruials in )
is not identically 0 as a polynomial in the o’s; there are therefore values of the
w’s for which this resultant is not 0, and for these values the #’s have no factor
common to all. There then exist scalar polynomials &, &, ---, & such that
St8; = 1 and therefore, if z = 2w, we have SzBy = L or Szdy =
Returning now to the form of A given in §5.06, namely

A = 2 A.yaSA T, Q)

?
Rz Ay N
3 sya ke N\

we ¢an a8 above choose #,, ¥, in such a manner that Sz.4,y. 7—1&} is the highest
common factor of the coordinates of 4, and, when this is done, v, = A.y./a.,
= A.zx,/a, are integral in A. We then have ¢ 08,

(35) 4=3 AASAE: — oS,
1 * ¢¥¢

Moreover Ay = 0 = A z; when ¢ < s and therefore in
www dbraulibragy} org in

SIZ] v a"?r] [ Andays - Ar?}rl | Szed,y; | = | 84 Ll E

all terms on one side of the main djﬁgﬁnal are 0 so that it reduces to Sz in
- Br Ay, = oo - an. Herice, dividing by a '+ «, and replacing
,y,fa, by v, as above, we se€ that [z, -+ z,]| and [# -+ v, ] are not 0 for
any value of A, and there%@ he constituent vectors in each set remain linearly
mdependent for all value of ». It follows in the same way that the sets
w, ', %, a0d g, yVy,, respectively, are also linearly independent for all
va.lues of A, that is{thése four sets are elementary sets. It follows from Theo-
rem 5 §4.03, thaf/we can find elementary polynomials P and Q such that

3\‘\\" Py, = ¢; = Q’u,- (3 =1, 2, e, ?‘),
and hencel®

(36)\ ) PAQ =P (2 a.v,Su.) Q = 2 s€25€5,

1 1

which is the normal form of §3.02.

5.00 Vector products. Let z; = Zfge, (1 = 1,2, ---, 7} be a set of arbi-
trary vectors and consider the set of all products of the form fuifer, - &ri
arranged in some definite order, These products may then be regarded as the
eoordinates of a hypernumber? of order n” which we shall call the tensor product’

* The term ‘hypernumber’ ig used in place of vector, ss defined in §1.01 since we now
wigh to use the term ‘vector’ in s more restricted sense.
 This product was called by Grassmann the general or indeterminate product.
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of 71, Z3, * -+, & and we ghall denote it by 75 ++- r, In particular if we
take all the products e,eq -« €y (i %5+, & = 1, 2, -»+, n) each has all
its coordinates zero except one, which has the value 1, and no two are equal.
Further

om0 Tr = ZEkes o Enfifn o i

"

If we regard the products eje;, « <+ e, as the basis of the sct of hypernumbers,
we are naturally led to consider sums of the type

W= L, - €086 T B

r

where the w's are scalars; and we shall call such a hypernumber a tenser of
grade v. It is readily seen that the product zze --- %, is distributive and

homogeneous with regard to each of its factors, that is, ¢\
A\
2y (\Tp £ pye)Ts v T o= AT -0 T b pBigels A TE
The product of two tensors of grade r and s is then defipéd b}; assuming the
distributive law and seiting )

(e\'leig e ei,—)(eneag T eia) = E“] v i‘{\},eh e e-l.g'

1t is easily shown that the produet so defined js‘:as"siociative; it is however not
commutative as is seen from thevexsdipteulibrary.org.in

R
T — Toty = ZZ{E10Eu08 E1i,E2i,) €484

E TE;“ ) i, l

‘ (enes, — €ufu)e
- Eﬂl'l ESI’,

Here the coefficients of e L2 ere, (h < da) are the coordinates of | zre |
so that this tensor might*have been defined in terms of the tensor product by
setting 4

PAY; | zaz | = Zadtz — Za¥y.

)
\

2N\ .
In the samek{ay, if we form the expression*

\‘ ;f(zlr £zy s z,) = ESgn(ilr Ty Te)TiTiy - Tip

and e§p5;’.n“d it in terms of the coordinates of the z’s and the fundamental units.
it is readily shown that the result is

*
E | ke, o e [ Sl e e}
(3]
¢ The determinant of a square array of veetors & (6,§=1,2, +--, r)ymay be defined as
| zij | = EE’gn(il} ":?: Tty T 16Ty * " Twin
In this definition the row marks are kept in normal order and the column marks perm_ut.ed;
s diffcrent expression is obtained if the roles of the row and column marks ate inter-

changed but, as these determinants seem to have little intrinsic interest, it is not worth
while to develop a notation for the numerous variants of the definition given above.



74 COMPOUND MATRICES [V ]
Here the scalar multipliers are the same as the coordinates of |z, --. z, |
and hence the definition of §1.11 may now be replaced by

[xlxg e .’L‘r.[ = Esgn(il, 1.2, Tty i,)x.-lx;, R O

which justifies the notation used. We then have

*
(37 | 212s + o0 2| = 2 | Brikae, ~ o £,

(]

[eigq o e .

It is easily seen that the tensors |eyei, -+ e | arc linearly independent and
(87) therefore shows that they form s basis for the set of vectors of{grade r.
Any expression of the form AN
ne
Zé‘.‘, e fy | ellel, e plr | ;:\ ’

ig called & vector of grade r and a vector of the form (37) 1& cahed a pure vector

of grade r. { ¢
510 The direct product. If 4; = [{al}|| (& = 4 2 -+, T} 18 a sequence
of matrices of order n, then Y,

—_ (1} 2} ir
(38) Amdwre - A, = 2 e, & },,J,;,,,g S S T

i3

WWW c[‘brauhbl ary or'g in

= Azae - %Y

where U is a linear homogeneous ten@on function of ra; - - - r,, that is, & matrix
in space of n” dimensions. This matrix is called the direct product® of
Ay As, -+, A; and is denoted\by 4, X 4g X --- X A, Obviously

(39) ARy X AsBa X = (Ay X As X - )(By X By X -+ -),
and the form of (38) gl‘{b;.i‘s that
(40) LOTA X A X ) = AT XAy X -

From (39) 1@:&& on putting + = 1 for convenience,
AANX Ay X As = (A X 1X 1){1 X Az X 1)(1 X 1 X 45).
\IaklﬁgA =1( =23, -+, r)in (38) we have
Az -, 1= Za b, - e oo e

and hence the determinant of the corresponding matrix equals |4, " .
Treating the other factors in the same way we then see that

(41) JALX A X o XA, | =44, -+ AT

F-1

Again if as in §5.04 We take z, as an invariant vector of A,, z; as an invariant
vector of 4, and s0 on, and denote the roots of 4, by A,;, we see that the roots

b This definition may be generalized by taking z,, @, --- as vectors in different spaces
of possibly different orders. See also §7.03.
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of A1 X Az X -+ X A, are the various products A he;, -+ + A,;,. When the roots
of each matrix are distinct, this gives equation (41) and, since this is an integral
relation among the coefficients of the A’s, it follows that it is true in general.

An importent particular case arises when each of the matrices in (38) equals
the same matrix 4; the resultant matrix is denoted by I1.{4), that is

(42) H(A) =AXAX-.- (r factors).

It is sometimes called the product transformation. Relations (39), (40), and
{41) then become

(43) I.(AB) = IL{4I,(B), N,(A) = II{4"), ] 0,(A) | _ ]A Imr_l..\

5.11 Induced or power matrices. If z,, 2, -+, Z, are arbitrdry vectors,
the symmetric expression obtained by forming their products in8very possible
L +

order and adding is called a permanent. It is usually denoted’fiy |zEg -0z, |
but it will be more convenient here to denote it by {z12; ¢'¢>2,}; and similarly,
if ai; is & square array of scalars, we shall denote by faujde - o,.] the func-
tion Zansqzy, - an, in which the summation str{t(:hes over every permuta-
tionof 1,2, «+-, r. K70

If some of the z's are equal, the terms of (&1 - - 2.} become equal in sets
each of which has the same numhenilstemiiry i the ='s fall into s groups of
1,'\1, %2, ---, 1, members, respectively, tbg’:members in each group being equal

*

1o one another, then N

{3132 o~ N 'ir}

n

e Zi; =7
AT SRR @iy = 1)

has integral coefficients, ot the present we shall denote this expression by
foixs o+ 2,)% but somelimes it will be more convenient to use the more
explicit notation &~

o0 nom
\~' 1 g ot b

2 &

in which 4o the z’s equal ;, i equal z,, ete.; this notation is, in fact, that
alreadyju%ed in §2.08, for instance,

i fx z y} = 2z% + 2xyr + 2yz*

{z y} = a2y + zyz + yxt = jlawy),

2 1
The same convention applies immediately to fanan -+ ar}.
In the notation just explained we have
(44) fozs - 2} = 2 bk o Bt lenen e}
where the summation =" extends over all combinations 7id -+ ¢ of the first

n integers repetition being allowed. This shows that the set of all permanents
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of grade r has the basis {eie;, - - e;,} of order (n 4 7 — Di/ri(n — 1)L
From (44) we readily derive

45) (Amdz - Azd = ) Mo o e e o Ead¥len o e

which is a linear tensor form in {z,xz; --- 2.}. We may therefore set
(46) {AmAz, -+ Az} = P(A){xze - =),

where P,(A)} is a matrix of order (n + r — D /ri(n — 1! whose coordinates
are the polynomials in the coordinates of A which are given in {45]; thisnnatrix
is called the rth induced or power matrix of 4. As with C\{(4) ahd/J1,(4) it
follows that O

PUAB) = PAAP(B), Pyd) = PAdN

4 P4
0 |P.(A)| = |4 [( P ); \

also the roots of P,{4) are the various produc’ssx.qﬂlhe form Ar A - AsT
for which Za; = 7. M

S\ 3
S

5.12 Associated matrices. +Ehg b{gg[-mggsygqggﬁlered in the preceding sec-
tions have certain common properties; thig€“eoordinates of cach are functions of
the variable mairix 4 and, if T(4) st&ﬁds for any one of them, then

(48) T(AB\= TA)T(B).

S )

Following Schur, who first t"s@st‘éd the general problem of determining all such
matrices, we shall call am§ymatrix with these properties an assecialed matrix.
If & is any constant mahﬁ}fin the same space as T(A4), then T1{4) = ST(4}58
is clearly also an aspppidted matrix; associated matrices related in this manner
are said to be eq«{éﬂ;ﬁnt.

Let the ordei$'of 4 and T(4) be »n and m respectively and dencte the corre-
sponding i’dghﬁty matrices by 1, and 1.; then from (48)

R

@9 ) = T(L),  TOITE) = T) = TA)T).

If s is the rank of T{l.), we can find & matrix S which transforms T(1.) into a
diagonal matrix with s 1's in the main diagonal and zeros elsewhere; and we
may without real loss of generality assume that T(1.) has this form to start
with, and write

T(1,) = \

1,,0‘|
lo o

|
The second equation of (49) then shows that T(A4) has the form

T4 ol

= | 50§
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and we shall therefore assume that ¢ = m so that T(1,) = 1. It follows
from this that | T(4) | # 0 so that T'(4) is not singular for every A ; we shall
then say that T is non-singular.

A non-singular assoclated matrix T'(4) iz reducible (cf. §3.10) if it can be
expressed in the form T(4) = Ti(4) + To(4) where, if E, = Ty(1,), £, =
Ty(l.), so that E; + E, = 1., then

TAd) = E\T(AYE,, Tud) = E,T(AE,
ET(AYE, = 0 = E.T(AYE,

so that
Q"
E? = EJ; Eg = Ez A
B\ = 0 = B, R\,
and there is therefore an equivalent associated matrix t(d),}}&:hfch has the form
AV YR R
@ =1 udg

When T{A} is reducible in this manner we hav\&:

TAAB) = E\T(ABYE, ~T(4)T(B)E,
E, Ty dhrap LE’B@M
BT BRBE: = Ty(A)TB)

so that Th(4) and T.(4) are separafely associated matrices. We may therse-
fore assume T(A) irreducible witheut loss of generality since reducible associated
matrices may he built up Q‘ut of irreducible ones by reversing the process
used above. \ -

513 We shall now ghow that, if X is a scalar variable, then T()\} is a power
of . To begin wi{h swe shall assume that the coordinates of T(A\) are rational
functions in A aaa\d that 7(1) is finite; we can then set T'(A) = Ti(x)/f(M) where
fOA) ig a scaldx“polynomial whose leading coefficient is 1 and the coordinates
of T1(\) axe\polynomials whose highest common factor has no factor in common
with f(AS "If 4 is a second sealar wvariable, (48) then gives
N
O TN T _ Tl
' SOOI (e JOw)’

henee () is a factor of f(A}f(u), from which it follows readily that f(Au)
= f\)Ff (1) so that f(\) is a power of A and also
(50) T () = D) Ty(u),
We also have f(1}) = 1 and hence T+{l,) = T{l.) = ln

Let Ty(x) = Fo + My + -+ + NF.(F, # 0); then from (50)

Fo + MeFy 4+ -+ + Ap'F, = (Fo +AF, + --- }(Fu+#F1+"'}

i
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which gives

FP= FyFiF;=0G ), GJi=01 9.

Now
TNT(A) = fOTNTEA) = fNTRA) = TA@TI);
therefore
SET(AN = ZT(A)F N
and hence on comparing powers of A we have ~

FiT(A) = T(4)F: A\

and, since 2F; = Ti(1) = 1, and we have assumed that T(A:):\is irreducible,
it follows that every F: = 0 except F,, which thereforeiequials 1,.. Hence
T.(\) = A* and, since f(A} is a power of A, we may set \\

(81} T\ = A,
Since T(AA) = TOUTA) = T4}, we have,t@:following theorem,

THEORE.M 9, If T(A) igirredycible. b(iz'?rdy... L_.’1"&.\‘\) is a rational function of the
scalar variable X, then T(\) = A" and thg:,coor%mates of T(A} are homogeneous
Functions of order v in the coordinates of AN

.

The restriction that T(A) is raﬁfmﬁl in A is not wholly necessary. For
instance, if ¢ is any whole numijer and ¢ 2 corresponding primitive root of 1,
then T+#{¢) = 1, and from tl’;iis“ﬁ? follows without much difficulty that T'(e} = ¢
where s is an integer whichimay be taken to be the same for any finite number

of values of ¢. It follog¥s then that, it T(A) = it \) ]|, the functions #;{%)
satisfy the equation N\ &/
’\“ i;_f{éh) = E"t;,‘(ﬂ)

'"\so
and under vt;yy}sx?ide sssumptions as to the nature of the functions ¢;; it follows

frora thig tha* T(») has the form», Again, if we assume that T(A) = }\“Z. 7.5

—a

the11}(>C)T(,u) = T{iu} gives immediately
T te = T(.li)
so that only one value of r is admissible and for this value T, = 1 as before,

5.14 If the coordinates of T(A) are rational functions of the coordinates @i
of A, so that 7 is an integer, we can set T(4) = T.(4)/f{A) where the coordi-
nates of T,(A) are integral in the a;; and f{4} is a scalar polynomial in these
variables which has no factor common to all the eoordinates of T,(A). As
in {(30) we then have

Ty(AB) = T(AYTW(B), f(AB) = j(A){(B).
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It follows from the theory of sealar invariants that f(4) can be taken as a
positive integral power of | A4 |; we shall therefore from this point on assume
that the coordinates of T(A} are homogeneous polynomials in the coordinates
of A unless the contrary is stated explicitly, We shall call » the index of T(4).

TureoreM 10. If T(A) is an associated matriz of order m- and index 7, and if
the ro0ls of A areon, aw, + '+, @, then the roots of T{A) have the form al'al’
" where Zr; = 1. The actual choice of the exponents r depends on the particular
assocmted mairix n question but, if al' alr -+ al® is one rool, all the distinct
quantities obtained from if by permuling the a's are also roots,

If the roots of 4 are arbitrary variables, then A is similar to a'}iiagonal
matrix A; = Zawe;. We can express T{A,) as a polynomiald i in t%ke e's, say

(52) T(A) = Zalwjr - ol .. O

n N\

where the F’s are constant matrices. If now B = H;S‘edg‘i'sza second variable
diagonal matrix, the relation T(4.B) = T(4}T'(B) gngﬁaas in (50)

FE Tgoass = Fnr; e TR
Fn\": anSL-'z L gy 0 ((Th a7 \\} S (S], 3 ))

and hence T'(4,) can be expressed as agiaga I\arxx;atrlx with roots of the required
form; these roots may of course be multlpfe thé' rank of F. ... i= not
necessarily 1, the elementary divisors five, however, simple.

Bince the associated matrices of similar matrices are similar, it follows that
the roots of the characterisiic eqiation of T(4) are given by those terms in
(52) for which F,,, ... ,, ¥ 0f{ and, since thiz equation has coefficients which
are polynomialg in the coozgch}tates of A4, the roots of T(A) remain in this form
even when the roots of 4 are not necessarily all different

The rest of the thegrem follows from the fact that the trace of T{A,) equals
that of T(A) w hl(}h\ls ‘rational in the coordinates of 4 and is theremre SyI-
metri¢ in the o:'s\~

'IHLOREM.\} The value of the determinant of T(A) is [ A ™" and rm/n is
an mieger

ij(A)T(ade) T(A|) = | A{" and therefore | T(4) | is a power of
iA‘T\, day | 4 |*. But T(4) is a matrix of order m whose coordinates are poly-
nomials in the coordinates of 4. Hence sn = mr and rm/n is an integer.

(53)

!J

T

515 Transformable systems. From a scalar point of view each of the
associated matrices discussed in §§5.03-5.11 can be characterized by a set of
sealar functions £, (¢ = 1, 2, +-+, m) of one or more sets of variables (%:,

¢ If we merely assume that 77(4,) is a convergent series of the form (52}, equation (53}
still holds. Tt follows that there are only a finite nember of termw in (32) since (52) shows
that there i{s no linear relation among those F., ... ., which are not zero. Let F;be the
sum of those F,, ... ., for which Zr; has & fixed value pi; then T(A) = TiF,, and as before
only one value of p, is admissihle when T{4) is irreducible.
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j=1,2 -, m,7=12 -, r, which have the following property: if the
£'s are subjected to a linear transformation

E:J.=Ea'fﬂgﬁ Kj=1,23_ -,--,n;{:l)Q, v, 7)
LE DY
and if 77 is the result of replacing &; by &i; in fi, then

m

= 2 wfs

=l

N\
where the a's are functions of the a;; and are independent of tha’t's. For

instance, corresponding to Ca(4) we have ¢\
2\
= . Ell" Elq =1.2 .. p \ by 3
f‘_.fpr;_ (p:q_ 1 = !nep‘.<()
‘fﬂp Ezq )
\.
for which \
| @or L Ogp
ij = Xpg ra = ] ap,‘.gm‘ l|
BE T

. www.dbraulibrasinoers.in T
We may, and will, always assume that there are no constant multipliers such

that ZAd: = 0. Such systems of, funefiors were first considered by Sylvester;
they are now generally called transformable systems.

If we put T(4) = || ey ||, we-have immediately T(AB) = T(A)YT(B), and
consequently there is an associded matrix corresponding to every transformable
system. Conversely, thez;efi? a transformable system corresponding to an
associated matrix. For X = || £; ] is a variable matrix and ¢ an arbitrary
constant vector in thé space of T{(4), then the coordinates of T(X)e form a
transformable system/sinee T(4)T(X)c = T(AX)c and ¢ can be so determined
that there is no gdansiant veetor b such that ST (X)e = 0.

The basis\ft (& = 1, 2, ---, m) may of*course be replaced by any basis
which is eqliivdlent in the sense of linear dependence, the result of such a change
being jsqfféplace T(4) by an equivalent associated matrix, If in particular
theré exists a basis

Ty G2 gkn.hl] hz, trty hk. (kl + kz = kj

such that the ¢'s and the h’s form separate transformable systems, then T(A4)
is reducible; and conversely, if T(4) is reducible, there always exists a basis
of this kind.

5.16 Transformable linear sets. If we adopt the tensor point of view
rather than the scalar one, an associated matrix is found to be connected with
a linear set § of constant tensors, derived from the fundamental units e;, guch
that, when ¢, is replaced by de¢; 0 = 1, 2, ---, n} in the members of the basis
of §, then the ncw tensors are linearly dependent on the old; in other words
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the set § is invariant as a whole under any linear transformation 4 of the funda-
mental units. For instance, in the case of C;(4) cited above, § is the linear
get, defined by

|6,'B_f] (i:j=1123"':n]£<j).

We shall call a set which has this property a fransformable linear set.
Let 21, 42, -, 4n be a transformable linear set of tensors of grade r and let

w" be the tensor that results when e; is replaced by Ade; (j = 1,2, --+, n) in us.
Since the set is transformable, we have
. "\
= 2 a‘ﬂ'u_f = T(A)u' ('2, = 1, 2, SN m)
g " \\\

where the a;; are homogeneous polynomials in the coordinates of, A of degree r.
If we employ a second transformation B, we then have

7%
S 3

= TA)TBu;, v =TABw: G =\1~2 e, m)

and therefore T'(A) is an associated matrix. \

We have now to show that there is a transformﬁ‘)ie linear set correspondmg
to every associated matrix. In dm ing thi thls it 1g convenient to extend the notation
Suv to the ease where w and v are rsoTs. o 3@'r°rgL5t E,: =12 .-+, n"
be the unit tensors of grade r and RN

= _El,&;E,-’,TU = Zg; K

any tensors of grade r; we then{:feﬁne Sur by

“\guv = (i a,i/.-go.-)/r!

ANX
where the numerigs.l~divisor is introduced solely in order not to disagree with
the definitionof \§5.02.
Let z; = E& G=12 -1 beaset of variable vectors and X; (1 = 1,
2, --+, 8 tne set of tensors of the form z7'zf’ --- z¥ (Zj; = r); we can then
put any Product £ £5* ... ¢#™ for which 28; = r in the form ESE.X, k
bemg\a numerical fa,ctcar T his eanr be dene in more than one way as a rule; in

fact, if E Bi; = B, then

5:: . Eﬁm — Seﬁu . Bin »31

Al o
and from the definition of Sus it is clear that the factors in ef" -+ eh" can
be permuted in any way without altering the value of the sealar. It follows that

ﬁm_ 1 - {e; ---en} B
CH T T S B B
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and repeating this process we get

klf'ﬁ” . EET"S{H:;“}{;}:CS[SU&:EE'

where %, is & numerical factor whose value is immaterial for our present purposes.
If f is any homogeneous polynomial in the variables £; of degree p, it ean be
expressed uniquely in the form

L T S SR R KRN

where the inner summation extends over the partitions of §; into B.;, ;3‘?, <o, Bin
@ = 1,2 -+, #) and the outer over all values of 8, §, ;-\, B, for which
=8 = p. We may therefore write N

F] 4 '\.'

f = Z SFJ'X,'
1 ) \‘:
e ; £

where, as above, )i = z%78 ... 2% and \v

::’. enl ey e @,
F;= Fggs ...5 W\Emdbraﬁddﬁpary mgﬁjj { e Bm}.
The expressmn of f in this form is Jm‘lque In the first place, F; = 0 unless
each ¢, ... 5, is zero, since the se.t oftensors of the form

\
€ e Gy, J0 T Bn i =
{ﬁ“ - \Q}»} {Srl .. Brn} (Zﬁu _B)

are clearly linearly 1ndependent Further, if TSF;X; = 0, then each SF;X;
is zero since each g\es Tise to terms of different typein the £;;; and finally the
form of F; shows~{hat SF;X;, = 0 only if F; = 0 since in

’,:\\' ’SF‘JX: = klzﬁpﬁu . 5"‘5?111 . »37»

each t{;r;m"‘é;if' the summation is of different type in the &,
Let\(fg}" be a transformable system; we can now write uniquely

(54) o= D) SEX, (h=1,2, o, m)
i

and we may set

=3 g = S ESE,
1 LTF)

where f; = 0 when ¢ > m. If we transform the z's by 4 = || a;; || and denote
TL,(A) temporarily by I, then X; becomes ITX; and F is transformed into F*
where

(55) F* = > ESF4IX; = D, BESIF; X,

1.7
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But the j’s form a transformable system and hence by this transformation f

becomes
fi= :E: aife
%
go that
(56} F* = Z aufrl: = z ES Z @ik E FiiX;
T i 3 7

Comparing (55) and (56) we have

; Q
o 53] S et~ w0
i k .\:\
and therefore, as was praved above, each of the terms of the sumxﬁﬁtioh is zero,
that is, N

k

%

and therefore, if j is kept fixed, the linear set ’:‘,\\‘

(59) (‘EM&V\F dbran [i}i;axl'y_or g.in

is transformable provided Fyj;, Fa; - - gm';iiﬁearly independent.
1f there is no j for which the set (§9}'is' linearly independent we proceed as
follows. Let f.',: = SF.‘,'X,‘ B0 tha.t‘::o

fl =,f$:£”‘+‘f12 + e +fls
f!\%’fél +f22 + T +fi!a

(60)

If the remova of'\a’fﬂy column of this array leaves the new f; so defined linearly
independent, dhey form a transformable system which defines the same asso-
ciated ma.t\ri}i'as the original system; we shall therefore suppose that the removal
of anyeoldmn leads to linear relations among the rows, the coefficients of these
relatigs‘ being constants. Remove DOw the first column; then by non-singular
constant combinations of the rows we cah make certain of them, say the first
my, equal 0, the remainder being linearly independent. On applying the same
transformation to the rows of (60), which leaves it still a transformable gystem,

we see that we may replace (60) by an array of the form

It = fu
61) fo = f
fml+l=fm|+lr]+f”'1+1x2+ +fm1+1-l
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where fu 4i — S+ @ =12, =, m — m,) are linearly independent. It
follows that f, --+,' fm, are transformed among themselves and o form a
transformable system. For these functions are transformed in the same way
as fu, fu + -, fou, and if the last m — m, TOWS of (61) were involved in the
transformation, this would mean that fu, -, Sy when transformed, would
depend on fm, 11, ¢ etc., which is impossible owing to the linear independence
Offml+g .—‘fm1+.'.1 (3 = 1,2, reey WM — ??L]).

Corresponding to the first column of (61) we have tensors Fy, Fo, ++-, Fu1
and we may suppose this basis so chosen that Fyy (=1, 2, -+ -, p} are linearly
independent and Fj; = 0 for 4 > p; and this can be done without diét-urbing
the general form of (61). If p = m, we have a transformable gfstem of the
type we wish to obtain and we shall therefore assume that p <\vn? We may

also suppose the basis so chosen that SFyFn = 85 (67 = 2, -+, p)asin
Lemma 2, §1.09. It follows from what we have provedyabove that #u, Fy,

.+, Fny is a transformable set. AN\

Let A be a real matrix, the corresponding trandformation of the F’s, being,
as in (58), \\

L4
(62) Ftl B Z aiiFi‘-l = II’F,;], s{.?‘x = 11 2! T p);
T arw.dbl'aulibral'yfqrg_in
we then have o >
(63) Foy = ey = WAy
LS

50 that the F; also for si:attr_ansformable set. Since Fyy, <., Fny form 2

transformable set, ay; and & are 0 when 7 > my and j < mu no matter what

matrix A is. Now, (7"

auy = SERFsy= SFAU(A)Fa = ST(OFF . = STADEE s

which equalé%"for i < my, j > mu since by (63) ' (A7) F} is derived from Fy
by the t;‘ahéformation A’ on the z's and for j < m is therefore linearly depend-
ent anjFl}l (j=1,2 -+, m). Hence the last m — » rows in (61) alsc form
a tﬁns’formable system, which is only possible if the system S fo - fm 18
reducible. If T(4) is irreducible, the corresponding transformable system is
irreducible and it follows now that there also corresponds to it an irreducible
transformable set of tensors.

517 We have now shown that to every associated matrix T(A) of index r and
order m there corresponds a transformable linear set of constant tensors
Fy, Fay, -+, Fy of grade r whose law of transformation is given by (62). Also
since II'(A4) = II(4"), we have

(64) IF, = Sa|Fr, OF; = ZagFs
where T(4") = || ay; |!.
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Since Fy, Fz, -, Fr are linearly independent, we can find a supplement to
this set in the set of all tensors of grade r, say

GhG2r"';Gﬂ (F=?1"""m)

such that

(65 SFG; = 0.

It is convenient also to choose bases for both sets such that

(65") SF Fi = b = SGG;.

Since the two sets together form a basis for the space of II, we can set ™\
I'G; = 2Bl + ZyiGs O\

and this gives : . S
8, = SPAU'G, = 8G.F,

which i 0 from (64) and {65), kence the G's are transfnrm'éa‘a.mong themselves
by M. This means, however, that I’ is reducible, add* when it is expressed
in terms of the basis (Fi, -+, Fu, Gh, -, G,.),:ﬁ}e' part corresponding to
{(F, +-+, Fn) has the form [} ay; i[w%nddis therefore similar to T'(4). Hence:

. W, bl'au[}b;'al'y,or in . . .
TuEOREM 12. Every drreducible associaled malriz T&‘l) of tndex r 18 equiva-

lent to an frreducible part of L(4), and cg@?ei'léely.

518 Irreducible transformable sets: \If F is a member of a transformable
linear set § = (Fy, Fa, -+, Fn), the total set of tensors derived from F by all
linear transformations of the fundamental units clearly form a transformable
linear set which is conta.ined\fn'%, say $; and we may suppose the basis of §
so chosen that §; = (P, Ky, -+, Fi) and SFF; = 8;; (5,7 = 1,2, ---, m).
Let G be an element of {F% + 1, -+, Fu) and G’ a transform of @ so that
o \u "
O & = ‘)"‘Fi.
& 2 |

Then SFG = vi. But SF.G' = SFG, where F ;s the transform of 7 obtained
by the «tifaﬁiéverse of the transformation which produced G’ from G so-that I;
isin § fori < k. Hencey: = Ofori=1,2, --+, k that is, (Fx 41, 5 Fm)
is also a transformable set; and so, when the original set is irreducible, we must
have §; = §. If we say that F generstes §, this result may be stated as follows.

LemMMa 5. An irreducible transformable linear set s generated by any one of
its members.

We may choose F so that it is homogeneous in each e;; for if we repl}ace, say,
e; by e, then F has the form I3*H . and by the same argument &s n:% _§5.13,
any Hy which is not 0 is homogeneous in ¢ and belongs to %. A repetition of
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this argument shows that we may choose F to be homogeneous in each of the
fundamental units which occur in it. If r is the grade of F, we may assume
that 7 depends'on ey, e, ---, &, and, if ki, &, -, &, are the corresponding
degrees of homogeneity, then Zk; = r and, when convenient, we may arrange
the notation so that k; 2> ke 2 --- 2 k..

If we now replace ¢, in F by ¢, + Xe; (z > s), the coefficient I of A is not 0,
since 7 > s, and H becomes kF when ¢ is replaced by e; it therefore forms a
generator of § in which the degree of e; is one less than before. It follows that,
when r < n, we may choose a generator which is linear and homogeneous in »
units e, &, -+, &. It is also readily shown that such a tensor defines an
irreducible transformable linear set if, and only if, it forms an irfeducible set
when the transformations of the units are restricted to permiting the first
r ¢'s among themselves. Further, since the choice of fundamental umnits is

arbitrary, we may replace them by variable vectors, gy ¥y, ---, .. For
instance, the transformable sets associated with II,, P,.,mi‘d C, are 2y - 2,
{zjxy -+ z.} and | 3xz - -- z. |, respectively, and of these the first is reducible
and the other two irreducible. PN

%4
W

N\
5.19 It is not difficult to caleulate directly the irreducible transformable sets
for small values of r by tlm\@‘ﬂbﬁuttl:&ay;sﬁhhgmf the preceding paragraph. If

we denote 33, 2, --- by 1,2, ---, the following are generators for r = 2, 3,
generator “';r:= 2 order
2.1 {12y ¢ nin + 1)/2
22 | 12)e\ n(n — 1)/2
N\ r=23

3.1 4123) n(n + 1{n + 2)/6
3.25.401 2314 n(n? — 1)/3
3300 | 1423} | n(nt — H73°

\3*4 123 ] n{n — )(n — 2)/6.

This method of determining the generators directly is tedious and the follow-
ing method is preferable.” Any generator has the form

\
\ 4 w, = zwili, vee 5 Bglyy t - T
) o 1,2, --«r .
and if g, ... ; denotes the substitution { .’ * . |, we may write
L3 T T
i = Ew;,,-, "’_Qil., e g, I, T £,
= qulziry -+ z:)

where g may be regarded (see chap. 10) as an element of the algebra S whose
units are the operators ¢ of the symmetric group on r letters. Now w, gener-
ates a tfransformable set and hence, if w; = ¢z, - z,) # = 1,2, ---)isa

" Fuller details of the actnal determination of the generators will be found in Weyl:
“Gruppeatheorie und Quantentheorie, 2 ed. chap. 5,
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basis of the set, and @ is the set of elements ¢, ¢, +-- in S, then the set of
elements Qg = (@ig, qug, ---) must be the same as the set Q, that is, in the
terminology of chapter 10, @ is a semi-invariant subalgebra of S; conversely
any such semi-invariant subalgebra gives rise to a transformable set and this
cet, is irreducible if the semi-invariant subalgebra is minimal, that is, is con~
tained in po other such subalgebra.

Tt follows now from the form derived for a group algebra such as S that we
get all independent generators as follows. In the first place the operators of S
can be divided into sets® 8 (k = 1,2, +++, §) guch that (i) the product of an
element, of S into an element of 8; (k¥ > 4) is zero; (ii) in the field of complex
pumbers a basis for each S can be chosen which gives the algebra of matrices
of order n?; and in an arbitrary field § is the direet product of a matrio,algebra
and a division algebra; (iii} there exists a set of elements tu, iy -, Ui,

in 8, such that 2 s is the identity of Sk and uf; = wx # 0, 3&;"1};1? =07 #j)

and such that the set of elements xSy is a division algébra, which in the
case of the complex field contains only one independent element; (iv) the
elements of Sk can be divided into vx sets S (t =12, ---) each of which
is a minimal semi-invariant subalgebra of § aq;(th\erefore corresponds to an
irreducible transformable set. ., dbraulibfa®y.org.in

s 1t is shown in the theory of groups that ! ejq’lia;,‘ls the number of partitions of r.

S

€ 3
L

\’\ \w

N

O
:"\s.



CHAPTER VI

SYMMETRIC, SKEEW, AND HERMITIAN MATRICES

6.01 Hermitian matrices. If we denote by % the matrix which is derived
from z by replzeing each coordinate by its conjugate imaginary, then z is
called a hermitian matrix if

r .\
{1) T =g O\
We may always set 2 = x, + iz, where z; and =, are real and (h)shows that,
when z is hermitian, (..'}‘. ]
(2) T =2, 2y = — Ty R

€0 that the theory of real symmetric and real skew mathi€es is contained in that
of the hermitian matrix. The following are q.,:fén; propertics which follow
imroediately from the definition; their proof igleft to the reader.

If z and y are hermitianmnd]:a*aiuslﬂmlaityan},t;n:hen

*

z+y, & z', axd’, -’!fy + yz, i{zy — yzl,

are all hermitian. N\
Any matrlx ¢ ean be expresséd umquely in the form ¢ 4 b where 20 =
x4+ i = —i{x — &') are(liermitian.

The product of two c}thutatwc hermitian matrices is hermitian. In
particular, any integral {(ppwer of a hermitian matrix z is hermitian; and, if
g(A) is a scalar polyferaial with real coefficients, g{z) is hermitian,

TrueoreM 1. #fe, b, ¢, --- are hermitian matrices such that a* + b + ¢* +
= (), the?msg, b, ¢, - areall 0.

I Ea2 »:sﬂ its trace is 0; but Za? = Zaad’ and the ’rrace of the latter is the
sum (}Kthe squares of the abqolute values of the coordinates of @, b, - -+ ; hence
each of these coordinates is {.,

TueorEM 2. The rools of a hermitian matriz are real and ils clemeniary
divisers are simple,

Iet = be a hermitian matrix and g(A) its reduced characteristic function.
Sinee g{z) = 0, we have 0 = §(z) = 7(z') and, since z and z’ have the same
reduced characteristic function, it follows that g(A) = g()\), that is, the coefli-
cients of g are real.  Suppose that £ = « + 8 (8 # 0) is a root of gfX); then
£y = a — 18 # & is also a root, and we may set

(3) ga) = (A — EN((D) 2N} = (A — 52)(5’1()\:‘ — ga{A))
K8
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where ¢, g are real polynomials of lower degree than g, neither of which is
identically O sinee g is real and £ complex. Now

(@ + (@) = lnl) + in@)ln) — 4]

and this produet is 0 since from (3) A — & is a factor of gi(d) — ig(r) and
n — 8@ + ig(\)) = g(A). But, since the coefficients of ¢ and g; are
real, the matrices g.(z), ¢>(z) are hermitian and, seeing that the sum of their
squares is 0, they both vanish by Theorem 1. This is however impossible
since g:(A) is of lower degree than the reduced eharacteristic funetion of z.
Henee = cannot have a eomplex root.

To prove that the elementary divisors are simple it is only necessary to shiow

that ¢g(\) has no multiple root. Let A\
Ko

g0 = (A — ORQ), k) = 0. A

Ifr> 1,88t o) = (A= 57~ 1(3); then [g(A\)]F has g(3) as.g Eibtor s0 that

the square of the hermitian matrix qi{z) is 0. Hence by I\Qéo'rem 1, ¢fz) is

itself 0, which is impossible since the degree of gy is lega’than that of g. It

follows that r eannot be greater than 1, which completes the proof of the
N

theorem. L&

Sinee the elementary divisors are wm@uﬂberw%@gﬂ form of ¢ is a diagonal

matrix. Suppose that n — 7 roots are 0 anduthat the remaining roots are
%, &, -+-, &r; these are of course not necesgs’airily all different. The canocnical
form is then ANY

L 2

E
K-
"'\ - Er
Nk -
= 0.

The f(@gﬁ-‘ing theorem is contained in the above results.

TuEoREM 3. A hermitian matriz of rank 7 has exactly n — r zero roofs.
Tt also follows immediately that the characteristic equation of z has the form
o — gzt o F (Ve T = 0 (a. = 0)

where g, is the elementary symmetric function of the £'s of degree 7. Since a-
is the sum of the principal minors of 2 of order 7, we have

TurorEM 4. In o hermition matrix of rank r at least one pringipal minor of
order r 18 not 0.
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In view of the opening paragraph of this section Theorems 1-4 apply also
to real symmetric matrices; they apply also to real skew matrices except that
Theorem 2 must be modified to state that the roots are pure imaginaries.

6.02 The invariant vectors of a hermitian matrix. Let I be a hermitian
matrix, o, a: two different roots, and ai, @, the corresponding invariant vectors
80 chosen that Sed; = 1; then, since Ha; = eay, Ha, = ayd,, we have
Sy = Swmfa = SH'wd = wSed,

and, gince a; # ay, we must have Sad; = 0. Again, if « is a repeated root of
order ¢ and a,, @, ---, @ & corresponding set of invariant vectors\we may
choose these vectors (ef. §1.09) so that Sa:d; = 8. The invarignt’ vectors
may therefore be so chosen that they form a unitary set and ( 3

o

(4) H = Zoa:8a:. X ~N
If U is the matrix defined by ,mz\g

5} Ue; = a (t = 1, 2, ey, »

( i ’x:g'

then x 4

(6) WWW-dbl‘WaJ_;yf’rgijﬁ

s

so that U is unitary, and if 4 is the diagonal matrix », a.¢;Se;, then
o A - 1

™ H QAT = VAU,
We may therefore say: N\

THEOREM 5, 4 her?r{itia}a mairiz can be transformed to tls canonical form by
a unilary mairiz. \

If H is & resl gymmetric matrix, the roots and invariant vectors are real,
and hence U‘i;n} real orthogonal matrix, Hence

THEqam:;;fﬁ. A real symmelric matriz can be transformed to ils canonicel
form by @ real orthogonal matriz.

If T is a real skew matrix, A = 47T is hermitian. The non-zero roots of T
are therefore pure imaginaries and oceur in pairs of opposite sign. The invari-
ant vectors corresponding to the zero roots are real and hence by the proof
just given they may be taken orthogomal to each other and to each of the
other invariant vectors, Hence, if the rank of T is r, we can find a real orthogo-
nal matrix which transforms it into a form in which the last n — r rows and
columns are zero.

Let ¢a be a root of T which is not 0 and @ = b + 4 a corresponding invariant
vector; then Ta = taa so that

Tb = —ac, Tc = ab,
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Hence
—aSc? = 8eTh = —8SbTe = —alSh?, —alSbe = SbTH =,
which gives

Sb? = Sct, 8bhe = 0.

We can then choose @ so that 8b = S =1 and can therefore find & real
orthogonal matrix which transforms T into

0 [« 4]
0 Q
0 {Xa ‘\

(8} —a; O = Sorj{es; — 15€z; — €2p5€2 A

—m

We have therefore the following theorem.

Turorem 7. If T is a real skew matriz, ils ﬂ.on-;em\rbots are pure imaginaries
and occur in pairs of opposie sign; its rank isceven; and it can be transformed
into the form (8) by a real orthogonaliidpgaulibrary org.in

6.03 Unitary and orthogonal matrices, {ﬁ‘he following properties of & upitary
matrix follow immediately from its d}éﬁh"xtion by equation (6).
The product of two unitary matrites iz unitary.
The transform of a hermitian{matrix by 1 unitary matrix is hermitian.
The transform of & unitary matrix by a unitary matrix is unitary.
Ii H; and H; are hermit-&i, a short calculation shows that
© :‘{’;1“= 1 — iH, , = i =]
72N 1+ <HY iy + 1
are unitary (t,hé:\inverses used exist since & hermitian matrix has only real
FoOts), Salx%ing (9) for H,and H; on the assumption that the requisite inverses
exist 'u@:gét)
V (U — 1) i(Us + 1)
Hy = o1
H

— 2._—'

T B

These are hermitian when U and Uz are unitary, and therefore any unitary
matrix which has no root equal to —1 can be put in the first form while the

second can be used when U has no root equal to 1.
TurorEM 8. The absolute value of each rool of @ unitary matriz equals 1.
Let « 4 8 be a root and @ + b & corresponding invariant vector; then

Ul + i) = (a + i8)a + ), Tla — ) = (e~ i8)(a — ).
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Hence
Sa? + Sb? = S{a + ib)(e — ib) = S(a + YU Ula — ) = SU(a+35) T (a — b)
— (o + F)S(a + ib)a — ) = (a* + IS + b),

sothata®+ 32 =1
Corollary.

UHa + b) = (« — i8)(a + b),
U'(a — ib) = U~Ha — ) = (a + B)(a — ib).

TurEOREM 9, The elemeglary divisors of a unitary mairix are sikple.
O\

10)

For, if we have

7'\
Ula, + iby) = (e + iBy{a1 + iby), U{os + iba) = (e + iﬁ)(“y.fk\fsz) + {er + o),
then from (10} AN 4

{a -+ i8)8(a ~ by {as + iby) = SU'(ex - ibi){az + B S — ib) Ulas + )
= (o + iB)S(@ — )(ax + ib) + Sfar — bi)(a + D)

which is impossible sinee S{a; — thi}{a: -k 16} = Sa} + Sb? = 0

The results of this sestien. @Jmalmbmngedggtﬁ&y to real! orthogonal matrices;
it is however convenient to repeat (9),.

Tureoreym 10, If U 75 a real orihogonal matriz, il can be expressed in the form
{a + T/t — T) if it has no, root ‘equal to 1 and tn the form (T — 1)/(T + 1)
if it has no root equal to —1, ﬁte matriz T being o real skew matriz in both cases;
and any real matriz of ihﬁ'{ﬁ(’oﬁn which is not infinite, 15 a real orthogonal malriz.

6.04 Hermitian aud~ gudsi-hermitian forms. Let H be a hermitian matrix and
z = u + i» a veetor of which » and 7 are the real and imaginary parts;
then the bxllnea\r Jform § = StHz is called a hermitian form. Such a form is
real since L\

s

N\ f = 8xHi = 8zH's = 8iHz = [.

AN
Tn farbicular, if z and H are real, f is a real quadratic form and, if H = :Tisa
pure imaginary, T is skew and f = 0.

If we express H in terms of its invariant vectors, say H = Zea:54, and
then put © = Zfia,, the form f becomes f = 2aididi. This shows that, if all
" the roots of H are positive, the value of f is positive for all values of z; H and f
are then said to be pesitive definite. Similarly if all the roots are negative,
H and f are negative definite. If some roots are 0 so that f vanishes for some
value of z # 0, we say that H and f are semi-definite, positive or negative as
the case may be. It follows immediately that, when H is semi-definite, StHx
can only vanish if Hx = 0.

! The first part of the theorem applies also to complex orthogonsl matrices.
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Tueorem 11. If H and K ore hermitian and H is definite, the elementary
divisors of HN — K are real and simple.

Gince 1N — K and —{HX — K) are equivalent, we may suppose that A 1s
positive definite. Its roots are then positive sc that
H = Eat—a,:Sa;
has real roots and hence is also hermitian so that H—KH} is hermitian. But
H\ — K = H) — HOEH-HID
<o that Hx — K is equivalent to A — [J¥KH which has real and siimplerele-
mentary divisors by Theorem 2.

In order to inclide the theory of complex symmetric matrices wedshdll now
define a type of matrix somewhat more general than the hermitigihmatrix and

closely connected with it. If A = A()) is a matrix whose ‘vacficients are
anulytic functions of a scalar variable ), we shall call it gw{s{-ﬁermitian if
(11) A'(W) = A(—N).

Tor convenience we shall set A"(A) for Al(—N} w,ith\\:i similar convention for
veclor functions. ,\

f A = B + A, B and € beifig Fil IR H{OEN, Wi 4" = B — AC so that,
if A is quasi-hermitian, B is symmetric and C skew just as in the case of a
hermitian matrix except that now B a,n”d~C are not necessarily real, If 4 is
any matrix, N\

o0P! = A’ 4+ A7 = 2PN 2Q' = (4’ — AM/\ =2

o that any matrix can be éx’:[:;fé;ased in the form P + AQ where P and Q are
quasi-hermitian. £ “ \

If x = u + Av, wherelz and v are vectors which are functions of A? and if 4
is-quasi-hermitian, then

Oy
(12) N ) = Sa"Az = f(-N)
is called axhasi-hermition form. Again, if |1 + M| # 0, and we set
¢ = ({% XA)/(1 4 AA), then
o = (1 — M) _ 1 — M _ (Q,,)_I
C 1A 1T+ a47

go that

(13} Qe =L
We shall call such a matrix quasi-orthogonal.

6.05 Reduction of a quasi-hermitian form to the sum of squares. Wehave
geen in §5.06 that any matrix A of renk r can be expressed in the form

r

- S84z,
{14) A = ZJ A, m
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where
SA'zx, _
A. +1 = A. - Aay: m’ - A:r leAaya ;é 0»
and the null space of A, ,, is obtained by adding Gn, 42 -y ¥s) to the null

space of A and the null space of A, ., by adding (x, 25, - -, z,) to that of 4,
Suppose mow that 4 is quasi-hermitien and replace y., . by z, 27 and set
2. = ta -+ g, A, = B, + AC, 80 that

Szt Az, = SuBu, + Z(28uCw, — Sv,Ba,) A
and, so long as 4, is not 0, we can clearly choose z, so that Sz{A 2" # 0. Each
matrix A, is then quasi-hermitian since 4, = 4, and £\
A2,SA"" -
15 A= jinkintinteiak. ll B
(15 2 Sz,4.z. AN
If z is an arbitrary vector and RN

£ = ) = Szda”, ei(3) = Sadb T 4,00 + 0

www . dbraulibrary 01'~g in
then ¢, and x, are linear functions of the coordinates of z which are linearly

independent and

Szd 2845z, -z > PN s () P07 — A%\
16) f= 2 Seldz, L Z 8204, -2 STz,
P {

which is the required exp\essmn for f(A?) in terms of squares.
If A is hermitian, .th.eﬁ A = 7 and v, x., Sz.d,z, = S%A,z. are real and,
if Sz.4.2. = a7t (MY becomes
Ry .

17) .(\W: = E @05

™ N 1

If }~<&.D, then A is symmetric and
\ }
(18) f=Szdz = 2, aw’
1

where the terms are all real if 4 is real.
In terms of the matrices themselves these results may be expressed as follows.

THEOREM 12. If A is a hermilian matriz of rank r, there exist an infinity of
sets of veclors a, and real constants o, such thal

(19) A=) aasa,;
1
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and, if A is symmelric, there exists an infinity of sels of veclors a, and consiants
a, such that

(20) 4= D) ansa,
1

a. and o, being real if A s real.

If « of the o’s in (19) are positive and » are negative, the difference ¢ = © — »
is called the signature of A. A given hermitian matrix may be brought to the
form (19) in a great variety of ways but, as we shall now show, the signature is
the same no matter how the reduction is carried out. Let K be the siioy of
the terms in (19) for which a. is positive and —X, the sum of the texms for
which it is negative so that A = K; — Ku; the matrices K, and Kg’aré“pOS‘lti_Ve
cemi-definite and, if %, and k; are their ranks, we have r = ki & ¥. Suppose
that by a different method of reduction we get A = M, — M, where M, and
M, are positive semi-definite matrices of ranks m; and m-,;\gmd my + M =
and suppose, if possible, that k; < ma. The orders of the null spaces of K;
and M, relative to the right ground of 4 are r — kand r — m; = myand,
since r — ko 4 ma > 1, there is at least one vec'pp{":c in the ground of A which
is common to both these null spaces; dhafudsbrarylorg.in

AI == K]I = T.’ﬂfzg = 0,

and hence 82Kz = —SIM,x. But bﬁj-}i;Kl and M, are positive semi-definite;
hence we must have SiKyz = 0 whith by §6.04 entails Kz = 0. We have
therefore arrived at a contradic,ti@n and so must have &k, = mp which is only
possible when the siguature\k:{ she same in both cases.

In the case of a skew rhatrix the reduction given by (16) is not convenient
and it is better to modi\fy. it as follows. Let 4’ = —A and set

»\A\ o4 g AwSAa  AzSAq.
AN T S, 4.y, SzAdg

R A, =4, Szrdg #0.

So 10n‘g\a:s"A, = 0, the condition Sz,4.y, # 0 can always be satisfied by &
suitable choice of z; and y. and it is easily proved as in §5.00 that the null
space of A, ., is obtained from that of A, by adding 2., ¥, also A, is skew 80

that we must necessarily have z, # y. [t follows that the rank of 4 iseven
and

(21}

*

/%
Az SAy, — AgySAx
(22) A _ L] a'y;a aya L]
2 Se. Ay,

= 20.’,(02.! - 18\‘12: - a?csa28 —1)

where each term in the summation is a skew matrix of rank 2 and

a:i = 'SxaAa? 23 ey — 1 = 445:53) doy = Aeyl‘
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This form corresponds to the one given in Theorem 12 for symmetric matrices,
If we put
vl

T = 2 (eg, ._18323 - ezxseh —-1) = _T’
1

rf2

(23) R = 2 a,(ess — 1Sez, — €208 —1) = — &
ri2 . ri2

P = 2 (a,ag,Seg.- +'ﬂ'dz.-1882. -1}y Q = 2 (012.:8323 4 an —.l\sgﬂa — 1)
T ’ X

RS

then (22) may be put in the form 4 = PTP’ = QRQ’. When s 7, the deter-
minant of T equals 1 and therefore 14| = | P[% Thg,.f;oil{)wmg theorem
summarizes these results. a3

z g ?
TuroreM 13. If A ¢s a skew matriz of rank r, them"('i}r 15 even; (1i) A can be
expressed by rational processes in the form

AN/
r/e < ;’\
(24) 4 = 2 alag S matuSapgt), = TP = QRC

1
where P, Q, R and T are given by (23.);{(%3) of v = n, the determinant of A isa
perfect square, namely | P|% (V)N = and y are any vectors and w =
Zoy ] oy — 1024 1,- then 2z -

(25) .\sjj?s‘my = 8|zy|w

The following theorem containg several known properties of hermitian
matrices. "

THECREM 14."\{13" T(A) is an associated matrz Jor which T'(4) = T(4"),
then, when A}{T{“quasi—hermitian, T(A) s also quasi-hermitian.

For 4’ ﬁ.A” gives T'(4) = T(4") = T(4") = T"(4).

Par:t,iquar cases of interest are: If A is hermitian, T(4) is hermitian, If
T(ud) = w'T(4) and A is skew, then T(A4) is skew if s is odd, symmetrie if
s i3 even.

r

6.06 The Kronecker method of reduction. Let 4 = 2 z:Sy; be a quasi-

1
hermitian matrix of rank r; then

(26) Tylz, = A’ = A" = 3278y,
from which it follows that y, is linearly dependent on zy, 3, - -+, %, 88Y

¥ = EQ’&:‘&::; i(}i;‘| #= 0, (i=1,2 e, 1)

i=1
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Using this value of y; we have
A = ZqmSe], A= ZgwiSy, A" = ZgiaiS
and therefore
27 Qs = 0y
Further, since | gs;} = 0, we can find sy G, j = 1,2, -+, 7) 80 that
<
£ GiiSie = dik
i

1

and then (27) gives 8y = 8, N\
Let 2y, *=5 Ty Lr gty ** s Tm be a basis and 2, 2, + - -, 2. the reciprqca\l.basis.
r {
Then, if w; = E . 5;i2", the basis reciprocal to Yl e, U T ey G, 2, is wf,
1 N
e, WYy Ze 41, 70y 2n Hence A

"

P = 2 wiSz; = Esi:“z’:s?f\\“‘
1 %4

, AN
is quasi-hermitian., Further, if u‘*";‘*’?g%ﬁb{%ﬁgﬁmpu = Itz and we
1, '

can choose u so that this form is not Ox\We also have

AP = Zr; ..."3,'1\8?;‘"2 w,—Sz; = z') .."3.'825,
[ .i:; 1 1

whence AP = u. \ \\
Let »,
X 3

X
L D

08 ALGEA - e a4=4, P=P

. * 7 Sul Pl

where P, is if_%fl}ed from A, in the same way as P is from 4 and u, is a vector
of the 1@3\1"@"\;’;‘1’0(111(1 of A, such that SuiPu, # 0; also, as above, AP = u
for an¢ Yeetor u in the left ground of A, and A, in quasi-hermitian. The
vector 2 belongs to the right ground of A, and therefore every vector of the
null space of 4, lies in the null space of A, 41; also

Su’ Pt

A, +1Paus'= AP, _ Ua m

= 1y, — % = O.

Hence the null space of A, 4 1 is derived from that of A, by adding P.u, toit.
Tt then follows as in §6.06 that A can be expressed in the form

\ 2’ Su
(29) A= S?a”;::u
1 & AUy
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which is analogous to (16) and may be used in its place in proving Theo-
rem 12,

We may also note that, if @ is the matrix defined by Qe; = z; (7 = 1, 2,
«++, n), then

A =@ D) quesSeQ” = QBY
1

where B is the quasi-hermitian matrix 2 g::8e;. It may be shown by an
1

argument similar to that used for hermitian matrices that a basigyfor the «’s
may be so chosen that @ is quasi-orthogonal provided A is redl,

6.07 Cogredient transformation. If SzAy and SzBy ;njef ¢wo bilinear forms,
the second is said to be derived from the first by ;ap?sﬁgredient transforma-
tion if there exists a non-singular matrix P such that StAy = SPxBPy, that is,

(30) A = P'BP. \\\

When this relation holds between 4 and B, we shall say they are cogredient.
From (30) we deriv%f‘fﬁiﬁ'éﬂﬁﬁkﬂl’ja‘ﬂf-Qﬁg-"F'.B'P and therefore, if

A A N A4
v=BT By v=B-F__v

then N
N R4S = P(U V)P

so that B <+ )\S\}i}xd I7 + AV are strictly equivalent.

Suppose ‘Qo}v"ersely that we are given that B + AS and U + AV, whichare
quasi—heprpitian, are strictly equivalent so that there exist constant non-singular
matrieds p, ¢ such that

) 4

R+ 28 =pU + V)
or
(31) R=1plg S=02pVg
then, remembering that R and U are symmetric, S and V skew, we ha
R =qUp, S =¢Vy
Equating these two values of K and S, respectively, we get
(¢)pU = Up'g™,  (@)'pV = Vo'¢™
or, if W stands for U or ¥ indifferently, and
32) J = (",
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we have
JW = WJ,
repeated application of which gives
JW = W'

From this it follows that, if f(A) is a scalar polynomial,
(33) FHW = W) = WJIN"

In perticulat, since | J | # 0, we may choose f(A} so that f{J) is a square root
of J and, denoting this square root by K, we have KW = WK’ or N\

W= K-WK', Ki=J, W=UoaV. D

Using this in (31) we have

R =pKWWK'q, 8= pK“-VK’q'\Z" ’
and from (32) p = ¢J = ¢K*or \%
pK_" = q!K = (K’Q:;.\\:
Hence, if we put P’ = ¢'K, thﬂm&rfﬂ];lm*ibra;'}%jz;rx‘g_in
R = PUP, 8=PVP
or :~
A =R+8=>~4U-+V)P=PFPBP
We therefore have the fo]low@ngttheorem, which is due to Kronecker.

THEOREM 15. 4 necessdv@'s and sufficient condition that A and B be cogredient
is that A + AA’ and B B’ shall be strictly equivalent.

If A and B ares :ﬁletric, these polynomials become A(1 + ) and B{1 + N
which are always. gfrictly equivalent provided the ranks of A and B are the
same. Henceieiué,dratic forms of the same rank are always cogredient, as i8
also evident}.:from Theorem 12 which shows in addition that P may be taken
real if ”ghé\'éi‘gnatures are the same.

The\dae"termination of P from (31) is unaltered if we suppose § symmetrical
instead of skew, or R skew instead of symmetrical. Hence

Tueorem 16. I R, S, U, V are ol symmetric or all skew, and if B + A8
and U + AV are stricily equivalent, we can find a constant non-singular matriz P
such that

R + A8 = P'(U + V)P,

that is, the corresponding poirs of forms are cogredient,

In the case of a hermitian form SiAz changing r into Pz replaces 4 by
P'AP and we have in place of (30)

(34) A = PBP.
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If we put B = 28.b.Sb,, then
P'BP = 38,P'b,8b,P = ZB8,P'b,SP'by = Z8:£.5¢..

where ¢, = P'b,, Equation (34) can therefore hold only if the signature as well
as the rauk is the same for B as for A. Conversely, if 4 = Za,0,57 arnd
A and B have the same signature and rank the notation may be so arranged
that «, and 8, have the same signs for all s; then any matrix for which

~ PAY
P'h, = b_ Qs (331}2; '--',?"), ]PI#O

N\
where 7 is the common rank of A and B, clearly satisfies (33).2 Hegce

Turorem 17. Twe hermitian forms are cogredient tf, and only) i, they have
the same rank and signaiure. ) Y

The reader will readily prove the following extension"‘@f Theorem 16 by the
aid of the artifice used in the proof of Theorem 11

TuroreEM 18. If A, B, C, D are hermitian .m'\c‘zlhces such that A 4+ AB and
C + D are (i) equivalent (i} both definite forssame value of A, there exists a eon-
stant non-stngular matriz o g dbrgiibrar ¥, Org.1n

A +\B = BYC + AD)P.
6.08 Real representation of a hgrﬁiit{an matrix. Any matrix # = A4 + 1B

in which A and B are real mafrices of order n can be represented as & real
matrix of order 2n. For tk@'\‘métrix of order 2

N

> oo -1
:".\ / 2=t -0 I
>
satisfies the equ{?})n i2 = —1 and, on forming the direct product of the original
set of matriced of order » and a set of order 2 in which ¢, lies, we get a set of
order 2n in\&«,’hich H is represented by
O _ . =lA ~B
S-A+iaB=|p 4]
As a verification of this we may note that
“ 4 -B! ’! ¢ -D| _ i 4C — BD —(AD+ BO)|
| B 4] |p c¢| " lap+Bc  AC — BD I

which eorresponds to
(A + iBYC + iDy = AC — BD + (4D + BC).

* The proof preceding Theorem 15 generalizes readily up to equation (33); at that
point, however, if K = f(J), we require K* = f(J"), which is only true when the coeflicients
of 7(x) are real.
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This representation has the disadvantage that a complex sealar o« + 18 is
represented by
5
8 af
which is not & sealar matrix although it is commutative with every matrix of
the form . Consequently, if H has a complex root, this root does not corre-
gpond to a root of §. If, however, all the roots of X are real, the relation
HE = aK is represented by $8 = off when « is real so that « is a root of
both H and $.

To prove the converse of this it is convenient to represent the vector &\ iy
in the original space by (z, ¥) in the extended space. Correspondjn{ to

€ N\

(4 +iB)(x + &) = Az — By -+ i(Bz + Ay)

U,

we then have N
A -—B
B A

If therefore © has a real root & and (z, ¢} is a cdfz}eéponding invariant vector
80 that AN

(z, y) = (A2 — By, Bx, +”Ey).

‘@(xi y) =" 2(3]39'131'1:1‘1]{%;)/“3)‘ Jdn
we have .“ \
Az — By =..a33,:' Bz + Ay = ay,

which gives Re N

(AFIB) 0 + i) = le + @)

It follows that invariaft vectors in the two representations correspond provided
they belong to reabyroots. This gives

THEOREM 1%:‘5(’0 every real root of H = A + 4B there corresponds a real
roat of K

Y A -B il
~O p = l B 4
and viceversa.

In this representation H and H’ correspond to

4 2] 15 2]
| —B 4 B A’ ‘s
respectively, and hence, if H is hermilian, B' = —B go that $ is symmetric.

The theory of hermitian matrices of order » can therefore be made to depend
on that of real symmetric matrices of order 2n. For example, if we have proved
of real symmetric matrices that they have real roots and simple elementg,ry
divisors, it follows that the same is true of hermitisn matrices, thus reversing

the order of the argument made in §6.01.



CHAPTER V11

COMMUTATIVE MATRICES

7.01 We have already seen in §2.08 how to find all matrices commutative with
& given matrix z which has no repeated roots.  We shall now treat t-l{a some-
what more complicated case in which z is not, so restricted. If

O\

N\

v ry = yz

then z7y = yz" 8o that, if f(A) is a scalar polynomigl, t.he.gi}'(zis_)y = yf{z). In
particular, if f; is a principal idempotent element of T, tIgc’{l'\f‘-y = yfi. Remem-
berine that Zf, = 1 we may set \/

z = Zfx = Iz, ¥y = E,{-y\\-; 2y,
&

afld B.IE?O, by §2.11, Ii. - )\Jt«$wz&b‘}ahu‘ifﬁrﬁr§sB@Qx!ﬁ%’t““t ‘Since 9\'-'1'_:' =0 =2y
(t # j), the determination of all matriegs .7 which satisfy (1) is reduced to
finding ¥ so that o

N

¥its = Ty ™y = fiy = yf.

We can therefore simplify t-ha”r}itation by first assuming that z has only one
principal idempotent elemén\t\,nl, and one root which may be taken to be0
without loss of generality e is then nilpotent.
Let e, ¢4, - -, ¢, bpthe partial idempotent elements of z and let their ranks
be n, ng, -+, n,; g then composed of bloeks of the form
.'\‘0

\ 010 --- 0
N 001 .- 0
\m‘; W 000 0 {n: rows and columns)
0 0 0 1
g 0 o0 0

provided the fundamental basis is suitably chosen. ‘['v simplify the notation
further we divide the array of n? units e;; into smaller arrays formhed by sepa-
rating off the first n, rows, then the next 7, rows, and so on, and then making a
similar division of the eolumns (see figure 1). And when this is done, we shall
denote the units in the bloek in which the #th set of rows meets the jth set of
columns by

6;:; 7= Lz . p=12 -+, n;q = 1,2 -, ny,
102
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It is also convenient to put eji = O for p > nyor ¢ > n;

m N2 Ty
| 11112113
n. | 21 {2223

ns | 31| 3233

Fia. 1
The expression for z is now
N
£ mi—1 ]
. ii N\ ¢
I = €y o1 T X 2N
i=1 p=1 i=1 NS ©
< N
and we may set , N
A "'\i’
y= ) mileih =2 B
i,5+PQ L) .
where ~NY;
ng ni o’.\

&/
= L= NS Tt
Yoi = €iYe; = R ITTE
ww w JBragiprary .org.in

The equation zy = yx is then equivalg{i{ o
(2} TYii = Yiili ‘v'(z:J =12 ', 8).

If we now suppress for the fement the superscripts ¢, j, which remain con-
stant in a single equation \'1{%(2), we may replace (2) by

a—l i aj ng nj ni—1
: : ePrP-P\.-{.}.E : E :ﬂlmelm - é : E :'ﬂfmelm Egg+1
p=1 W) =i m=1 1=21 m=1 a=1
$
or :"\':.
.(\\“ n mi—l ni a1
(3) N 2 : z : Ap + 1, mEpm = E : z : Mg, g 4 1n
O m=1 p=1 1=1 g=1

Equ}ﬁﬁg corresponding coefficients then gives
(4) Np 41, g+1 = TMre
Since ¢ > 1 on the right of (3), it follows that np 11,1 = 0 r=12 --,

n; — 1) and, since p < n; — 1 on the left, nuq = 0 (g =1, 2, -+, s — 1)
and hence from (4)

(5) ﬂp+:.r=0=’?n.--t,q—:

where p = 0,1, ---,my —Lg=¢t+ L s+ 2 -y Ry — ,t=101, -

From (4) we see that in y.; all coordinates in an oblique line parallel to the
main diagonal of the original array have the same value; from the first part
of (5) those to the left of the oblique AB through the upper left hand corner



104 COMMUTATIVE MATRICES { VII}

are zero, a8 are also those to the left of the oblique CD through the lower right
hand corner; the coordinates in the other obliques are arbitrary except that,
as already stated, the coordinates in the same oblique are equal by (4). This
state of affairs is made clearer by figure 2 where all coordinates are 0 except
those in the shaded portion.

A \x
A < e
- \& . B 2\
’ &
he - :.\\ ot

. W

] D . '8 A 0
N < 1Ny n;*i':'ﬁ'
H \:”\\\ ¥

Fia. 2 N

As an example of this take p
a 1 N\,

G
wwypdbraulibrary ;61:g.'in
s W

a ] o
QN
z = N\
\ a 1
S “

\\ a 1
WO 1
P4, a

The above rules then give for y
:“\‘~
\\, G tn . b B . . . e«
R\
AN\ .« Oy . .obe . S 4
N”

\”\g”' de &1 e & & . . fo i |
de . e e . . . fo hi
€ . . . . fﬂ
(6) .
go 41 he b he 40 @ ot
L. ke by . 2y 4 G 13
he . . 4y 41 12
iy 1
1o

where the dots represent 0.
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If we arrange the notation so that n, £ m € -+ < 7, & simple enumera-
tion shows that the number of independent parameters in y is

(28 — s + (28 — 3me + -+ + na
We have therefore the following theorem which i3 due to Frobenius.

TuzorEm 1. If the elementary divisors of x are (\ — X)™i, ¢ = 1, 2 ..., T,
i=1,2 -8 where Ay, As, * 5 A are oll different and ng < R < -0 K N,
then the general form of a mairiz commutative with ¢ depends on

Er Z @s — % + Dy O\

f=1 jml

Q

independent parameters.

702 Commutative sets of matrices. The simple eaﬁsﬁtion zy = yxr MAY
be replaced by the more stringent one that ¥ is commuitative with every matrix
which is eommutative with z. To begin with :“sthail merely assume that y
is commutative with each of a particular set of partial idempotent elements e;;
48 in tht? previous section we Imay assumes }ll_g%y%?g?j J?Iﬂ}' one prineipal ider-
potent element. o\ o

In order that ey = yes for every 4 it is necessary and sufficient that y; = 0
when ¢ = 7; i uw, ey -0y W are}lth"e partial nilpotent elements of z corre-

sponding to e, &, *-, & and we'set m; = ng — 1, this gives for y
A _
(T Y= :2';”.(1?ia€i 4 ootz + -0 Tim 87 )

If we now put z =, E“ t,&.-e.- + u.), where no 8 = 0, and if g(A} is any scalar
polynomial, thqr:l\(cf .a §2.11)
00 = Fatbe + wd = TE@Ie + B + o o™ ERT/mY

angi\wﬁgﬁ'y is given, we can always find g(A) so that
3
na = g¥(B:)/k!

provided the #'s are all different. Hence every ¥, including =z itself, can be
expressed as a polynomial in z.

We now impose the more exacting condition that ¥ is permutable with every
matrix permutable with z. Let n; (¢ # j) be the matrix of the same form as
i in §7.01 but with zero coordinates everywhere except in the principal oblique;
for example in (6) uzs is obtained by putting fo = 1 and making every other
coordinate 0. We then have

Uiy = Uity Uithis = UMy
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Hence yuy; = il gives yitts; = iy and therefore from (7)
(paes + mawet + -+ F mim T ey = uglngee; + omag + -0 A nim )
= (mpe; -+ matts + -0 g 0Ty
from which we readily derive for all ¢, j and k&
it = Mk

with the understanding that n.4 does not actually oceur when & > m;. When
r is the matrix used in deriving (6}, these conditions give in place of (6)

ay ady . - - . . . . . ’\\\’
\
N
g oy e . N ’
'\Q.
dpy M \J -
S T \\
(8) €

. . . dpy ‘dl'; a3
www.dbraulibrary.drg.in
WA o Qo & (2 Oy

RS ,': S . On @1 a

. “ . dp
) i“x\ a.
\

Comparing this formPwith (7) we see that ¥ is now a secalar polynomial in z,
which in the particuld?;case given above becomes g{z — «) where

D00 = a0 e + @+ al + a

The result-sgef\\this section may be summarized as follows,

FIHLQ'I{”\\’I 2, Any matriz which s commulaiive, nof on;’y with x, but also with
everyNpatriz convnutative with x, is a scalar polynomial in z.

7.03 Rational methods. Since the solution of ry — yz = O for y can be
regarded as equivalent to solving a system of linear homogeneous equations,
the solution should be expressible rationally in terms of suitably chosen param-
eters: the method of $7.01, though elementary and direct, cannot therefore be
regarded as wholly satisfactory, The following discussion, which is due to
Frobenius, avoids this difficulty but is correspondingly less explicit.

As before let zy = yrand seva = A — z;also let b = L7'aM ~! be the normal
form of a. If u is an arbitrary polynomial in A and we set

P = LYau + ), Q= Mua + y)M,
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then
Pb = PL-aM~t = L-au + y)aM ! = L7a(ua + y3 M~ = Q.
Conversely, if Pb = bQ and, using the division transformation, we set
) LPL7Y = av + ¥, MIQM = va + yu
where y and ¥, are constants, then
¢ = Pb — 6@ = L Wav + yleM~! — L'a{na + y) M~

or a(v — vi)a = @ — Y. Here the degree on the left is at least. 2’and on
the right only 1 and hence by the usual argument both sides of the pquation
vanish. This gives <\)

ava = avd, ay;, = ya . \\

whence s, = ¢ and, since @ = A — 1z, also yy = y =0 t-h:xtf:éi,fz: L.
Hence we can find all matrices commutative with z bi\finding all solutions of

10 Pb = Q.
( ¢S
Let ou, az *-°, an be the invariant factqpéi'sof a and ny, ng, -, Ha the

corresponding degrees so0 tha%@»jﬁiﬁ'p?uﬂﬁfk@%%rgﬁ}rix Tasey, and let P o=
| Pii 1, @ = || @ |i; then oA\ o

(11) Pioas aifdis
By the division transformation yw'er may set
Py = Rtf&: 4 pa Qo= Sooas T+ g
and then from (10} we hé%
\" Ry = Suy  pu; = s
or, it p = [l pylfDa = 1l 9us 1
ay o pb = by

Hencc;R’*—-' p, @ = ¢is a solution of (10) for which the degree of pi; ie less than
tha€ of . and the degree of g:; is less than that of a;. It is then evident that,
when” the general solution p, ¢ of (12) is found, then the general solution of
{10 has the form

where I is an arbitrary matric polypomial in A. We are however not con-
cerned with R; for

LPL-t = LbRL-' + LpL~' = aM~RL™* + LpL~"
so that in (9) the value of y depends cn p oniy.

1 Bince we may add a scalar to z we may clearly assume that the rank of aisn,
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The general solution of (12) is given by

2.5
Pii = — Sijx Py = 85
o S .
(13) =)
4.3
Tii = Sijy i = — 8jc
O:_,'

where s, , 15 an arbitrary polynomial whose degree is at most n, — J and which
thereforc depends on =, parameters. It follows that the total nu"rgber of
parameters in the value of ¥ is that aiready given in §7.01. \

O\
7.04 The direct product. We shall consider in this section some” properties
of the direct produet which was defined in §5.10. N

a
<

Turorem 3. If fi; (3, j= 1,2, -, m) is a set of Q?;’\fﬁiliccs, of order n, for
which \¥%

(14) Fifse = bl Qo= 1,

) www_dbraylibl'aryfot;g.in . .
then m s o factor of n and any matriz of Qrdér m can be expressed uniquely in the

form Zaufi; where each a.; ts commutalifeswith every fr,; and, if n = mr, the renk
of each fn, s 7. N\

For, if z is an arbitrary mgtfix’ and we sct

&
(15) A a =Y fufn
NG =1
a short ealculatiof’shows:
(i) z = Eax{w-';
(U) ai:fpa:‘.:__\pqaii f()[‘ 3—“ 3.: jr o
(111} tl}egsef. 9% of all matrices of the form (15) is elosed under the operations
of ad({‘fi,or’i and multiplication;
(iv) Yf by, iz, -+ are members of ¥, then by [y is zero if, and ooly if, each
bl'j = 0
If (@, as, +++, @) i8 8 basis of ¥, it follows that
(gpfi:p= 1,2, o, Lid, 7 =1,2 -, m}

is equivalent to the basis (e;;,4,j = 1, 2, -+, n) of the set of matrices of orde
n. This basis contains Im? independent elements and hence n* = Im? so thav
n = mr, I = % Let ry; be the rank of fi;. Since fi; = fufys, it follows from
Theorem 8 of chapter [ that ri; < ry; also from fifi = fii we have rjy < 7is;
hence r;; = r;; and therefore each r; has the same value. Finally, since
1 = Zf, and fuifs; = 0 (i # j) and ry; = r;; we have mri; = n and hence each
Tij = T,
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We shall now show that a basis gi; can be chosen for % which satisfies the
relations (14) with r in place of m. Since the rank of fi; is r, we can set

r

(16) fu = 2 awSBe  (E=1,2 -+, m

1
where the sets of vectors {ow) and (Bu) (6 = 1,2, «+-, m; k = 1,2, --+, 7)
each form a basis of the n-space since Z fu=1. If (a}}), (8:;) are the corre-

i=1
sponding reciprocal sets and A\

pu = ) BaSaly (=12 - m K
1 w4

' 4
*
we have, since Sa.;,a“ = b¢;Bsy ~,‘ }

ZP:: = Efuzpn = zzaakSﬁnkﬁ”Sa” = Ea.kg‘a,;, = ,

and similarly \\,
- o Y D g
Jupu = Z a'k%%w-dbl'aﬁlﬁﬂ};;yoorgj19' £ §).
Hence O\
(17) fu= f.'.‘fﬁ’;ﬁ = E S ik
O *

3
N/

that is B = aik \\
Since fi; = fufufin j;he};left ground of f; is the same as that of f; and its right
ground is the sam@as/that of f;. Let
N
© fu = ZauSva
The vectors\y,k (k=1,2, -+, r) then form a basis for the set aj, (8 = 1, 2,
md since the bams chosen for this set in (16) is immaterial, we may

supj\ Y= an (=12 -, m k=1,2 ---, 7), that ig,
= EauSa;-k.
k

Similarly we may set fu = ZopSou and then since

2 a;kSa:k =Ju = fufa = E duSa;kﬂf.Sﬂl- = ZawShy,
k k.x

¥ -
we have 8 = a,, and therefore

f;'l = za.‘kS“u.
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and finally
(18) Fi = Tafu= ) ewSaye, Sal, = SawSaly.
k&
If we now set as = Pey _yr 4 & then by §1.09 P is non-singular and o,
= (P les —ur + k5 hence, if
\
(19) hij = 2_, Ef —Tyr 4 &, (7 —r + E»
k=1 N\
we have Oy
(20 fii = PhyP-L. \ O
Also if \ ’
o AN
! v/
(21) kii = 2 Car 4, 87+ 3¢ \
£=10 'xi\)\d
- Nt
then AV
www.dbraulibraryore in
(22} kifhn 41, q+1 = €pr +~l,'¥q}. +g;‘ = flp+t, ¢+ ki

so that the set {¢;;) of all mat-ricgs?ﬁ"f order n may be regarded as the direct
product of the sets (k) and (kji,.;). “Finally, since any matrix can be expressed
in the form 3byh:;, where thé\Oy depend on the basis (i), it follows that an
arbitrary matrix can alsc\@e"expressed in the form

: S PEbiih Pt = TP Py

AN/
Pb;P~! depends oa the basis (Pki;P™!) and hence, if we set
N\

,\\"’ G = Pkf-fp—-l (3,_}. = 1: 2! Ty ?‘)

2 S

the g's ft)ifm'a basis of ¥ which satisfies (14).

3
705 TFunctions of commutative matrices. Let x and y be commuiative
matrices whose distinet Toots are Ay, Ay, --- and umy, ma, -0 respectively and
let R, be the principal idempotent unit of » corresponding to A; and similarly
S; the principal idempotent unit of ¥ corresponding to w;. Since R: and S;
are scalar polynomials in z and y, they are commutative, If we set

Ty = RS;,
those T'; which are not 0 are linearly independent; for if S¢;T:; = 0, then
0 = B26, T8, = £oTou
since R.R; = 6,,R,, S;S; = 8is%, so that either ¢, = Oor T,, = V.
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From the definition of Ty; it follows that Ti;T,, = 0 when ¢ = p or j & g,
and 7%, = Ty, ZTy; = 1; hence

r = 2 D+ & — li)]rpi:‘: ¥= 2 ey + ¥ — 21Ty

where (z — A)Ty;and (y — p)Ts; arve nilpotent.  If ¢(, u) is any scalar poly-
nomial then

Vo) = 0, 1) F D B = A — )

where ¢! are scalars, we have therefore O\
A
g2, y) = 2 I:‘if(?\i, ud T + E Voile = Xy —wa'Ty
iy r, AN 3
= 2 ¥y, w) T -+ 2
. —~

where ,*'.\\:

79 = (¢ — N/ @GEw) T
and » runs from 1 to p; — “i‘;’“h’*f@i%&’};}?fﬁ‘btﬁﬁgémallest integer for which
(z — A2 R; = 0, and s has a similag fange with respect to y. The matrices
T1¢ are commutative and each is nilpotent; and hence any linear combination

of them is also nilpotent. ~
Let Q

> vHTRON

T, e

2\Y
2= B )Ty = 22y T
then w, being the sum ©f commutative nilpotent matrices, is nilpotent. If we
take in z only terms fof which Ty # 0, we se¢ immediately that the roots of z
are the corresponding coefficients ¥(h;, #:); and the reduced characteristic
function of z+j& jound as in §2.12. We have therefore the following theorem
which is giué\to Frobeniuns.

Tiigoﬁﬁm 4, IfR, S (=12 -;5=1L2 - -) are the principal idem-
polent, wnits of the commutative malrices T, ¥ and Ty = RS;; and of My, py are the
corresponding rools of = and ¥, respectively; then the roots of any scalar function
¥(x, 1) of z and v are y iy y) where i and j take only those values for which T'e £ 0,

This theorem extends immediately to any number of ecommutative matrices.

7.06 Sylvester's identities. It was shown in §2.08 that, if the roots of =z
are all distinct, the only matrices commutative with it are scalar polynomials
in z; and in doing so certain identities, due to Sylvester, were deriv :{d. We
shall now consider these identities in more detail.

We have already seen that ip

)= A=zl =AFar T4 o T ed TG
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the coefficient ¢, of A" — 7 is (—1)7 times the sum of the principal minors of
of order r; these coefficients are therefore homogeneous polynomials of degree r
in the coordinates of z. We shall now denote (—1)7a. by {7]. If z is replaced
by M + sy, then [5] can be expressed as a homogeneous polynomial in A, 4
of degree », and we shall write

(23) [Az 'j’: P?J] = 2 {f , E S}Al#r -

=10
We shall further set, as in §2.08, S
, O\
(24) Oz + ) = D, {‘: Y 8} s OF
=0 .

0"‘
S D

where {? ¥} is obtained by multiplying s «’s and £ y’s toga\her in every possible
way and adding the terms so obtained.
In this notation the characteristic equation of )\a-\-j- ,uy is

(25) 0= Z(—l)m[)‘“'”y Ehx+#y)""

dbrauhb ry.orgin

2l Y .
_Z[s r—s_-_l{;j-vs n+s—r—t}»“ g

T, &k

where in the second summat;g{;[ Ylor {3 %] is to be replaced by 0 if either
p or ¢ is negative and [ = 1. Smce )\ is an independent variable, the
coefficients of its vanoua \owers in (25) are identically 0, and therefore

AENT Y ;] x ) . —
(26) E( DL; r—s]{t-—s n+s—r—t}“0 ¢=01, - n

roe=l

a series of 1de'§\3al relations connecting two arbitrary matrices.

These idfer'tti’oles can be generalized immediately. If zi, z3, -+, &m are any
matrlees and Ay, Mg, - -, scalar variables, we mby write

N/
ZNiTi _ Ty Ty v 3 L.
[Pe]=2 [ = e e e
) = L1 B2t Tmlyrr 4t |, e
(Ex'x') 2 {TI Ty = Tm} l1 AQ hm

and by the same reasoning as before we have

28 . 1 Ty &g v T ), Ty . Ln }z
( ) erzrm( )[T‘l fo »*» Im | (81 — 71 88— T2 *** 8w — T

(59

(27) (E',".' = }")
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where 81, &, *- . Sa is any partition of n, zero parts included, and as before
a bracket symbol is 0 when any exponent is negative.

- ER; i . . . .
Since l: rle is the sum of the principal minors of ZA.z; of order r, we see

Ty Xy v Em
1 e = Tm
of x; of order r and the corresponding minors of 2y, 23, - -+, Tm and replace 1z
of its columns by the corresponding columns of z;, then replace 7, of the remain-
ing columns by the corresponding ones of x3, and so on; do this in every possible
way for each of the minors of order r of z; and add all the terms so obtained.

There is a great variety of relations conneeting the scalar functions déﬁned
above, a few of which we note here for convenience.

that{ ] (Zr; = r) is formed as follows. Take any principal minor

N\
AN

. 17 al 1. @=n! [0
® I:T] o riln — “.")_1.’. [?‘ s:l - sin—r— s)“![‘r"}

[]=1e0 [ fed)

A\J
e 72\ . .
(i) The value of [xl ¥ . x.,.il is unchanged By a cyclic permutation of
the 2's www dhbaulibrary org.in

W

11-0-17] 8% nl
(i} ' f1T2 * " Im :{_”H(r.-!) (n — Zr)?
Ty et Tm 1 \F (n — Zr)! [:rlzz---x...:l
nrz---rﬂ.,\s't sn —s — Zr)llnm o Tm
zz (N n yp] _ (! [z ¥ °---'yp]
MK Tm S N Sy () [Zrisi o 8
- e @iy v | 5 | T Ye T Wi Ve, ---ya..]
{iv) <[};.]1“_1]“2}[1 1 .- 1 1 R |

where the’js{immation oxtends over the nl/ri{n — r)! ways of choosing r integers
outs@’ \I/ 2, ---, n, the order being immaterial.

7.07 Similar matrices. In addition to the identities discussed in the pre-
ceding section Sylvester gave another type, & modification of which we shall
now discuss. If z, y, o are arbitrary matrices, we bhave

(29) I'+1f$ — Gy'+l' = :c(z’a + xr-lay + xr—ﬂayz + - + ﬂ'y')
— (et ar-lay+ar Tyt o ay’ )y
or say

1:'-"‘10 _ ayr+1 = z(z,ﬂ’ y),- — (I, da, y)fy
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where

»

(30) (z, 8, %), = E 7 ayi.

=0
Suppose now that z and y satisfy the same equation f(A) = 0 where
FO) =Nt F a4 s m A T

x and y being commutative with each a; and ¢ commutative with every a..

m—1 {'\
31 w = Zﬂ; ad@, & Pm — 1 =13 o \
then A
. A
32 0= fwa—afly) = Za@~ia — oy ) T - w.
If | ul 5 0, it follows that y = ulzu, that is, z a tl\\‘;g%re similar.

Let

It can be shown that a can be chosen so that | ;&i\ 0 provided z and y have

the same invariant factors and f(0) is the red;{
)

A 7’
www.dbraulibragy) \Org.in

AN
«“ o
Al
N
Y
Q\Q:‘“
A
~N
g\«’\ v
L))
O
N4
L)
"\\’s.l
&/
O

characteristic function,



CHAPTER VIII

FUNCTIONS QOF MATRICES

8.01 Matric polynomials, The form of a polynomial in a matrix has already
been discussed in §2.11 but we repeat the principal formulas here for con-

venience. If x is a matrix whose reduced characteristic function is 2\
SO\
N e = [T 0= w) 2=, R
i=1 « \J
and A\

mi(W) = @0/ — A, M )m) + (1 —A.\J'\'Na(k) =1,

(2) @) = MMm(\), o0
™
(3) @i = oi(z) ;www]ﬂbﬁuq%tm}%}ﬁsg.in

and if g{A) i3 a scalar polynomial in A, thﬁﬁ,{;

T v:{:.v o5 —~ 1) ‘j:‘—l
{4) g{z) = 2 [ﬁ'()\-')soi +'g’0\'.v)h,- +oe T+ %]

1=1

)
This formula can still be ihferpreted when the coeficients of g(A) are matrices,
but in this case the notatjon g(x) is ambiguous. Let g(») = a0 + ar + -+~
+ @A™ then \<"

as + a@(:%i o ™ and ay+ xa A -+ xMas

are called, rgsp'e}\:tively, the dextro- and laeve-lateral polynomials corresponding
to g(r). K8 clear that (4) holds for a dextro-lateral polynomial and will
give tie \corresponding laevo-lateral polynemial if g()ew ¢'(Ak ete., are
replacedVby ¢.g(A:), hig'(Mo), ete.

8.02 Infinite series. If aq, a, -+ are matrices and A a scalar variable the
coordinates of the matrix

(5 g\ = ap + ah + e + -

are scalar infinite series in A; and if each of these zeries converges for mod X less
than p, we say that the series (5) converges. When this condition is satisfied,
the series

) g(x) = ap + ax + az® + -
115
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converges for any matrix z for which the absolute value of the root of greatest
absolute value is less than p. For if g. is the sum of the first m terms of (6),
then by 4) g = 2 gmi Where

- DOk

’ g
Ini = gn(Adpi + galAihe + -0 T (v — )1

The matrices ¢y, h; are independent of m and, since the absolute value of each
A; is less than p, gm(A), gn(As), ***» gu® ~ V(A converge to gAg), ¢'(A, -,

g~ U(A;} when m approaches infinity. ~
As an illustration of such a series we may define exp z and log (1 z) by
O\
2 A\
(7 expx=e”=].+;+%+... "“\

sl
7NN
< D

2 N
(8) log (1 + =) z—%+.x3_a+ ...":"\\

The first of these converges for every matrix z, .th;second for matrices all of
whose roots are less than 1 in absolute value., { &

The usual rules for adding serjes anc for mglt_iglying series whose coefficients
are commutative with z and With eac fyo%!}i%f hold for matric series. For
instance we can show by the ordinary :?pl;c")of that, if 2y = yz, then et ¥ =

e%¢v but this will not usually be the case if oy # yz.

8.03 The canonical form of alfunction. In the case of multiform functicns
(4) does not always give #he most general determination of the function
which is only obtained by%gdng into account the partial as well as the princi-
pal elements of the vasiable z. Asin §3.06 supposg that z has the canonical

form O\
"\u

& 3]
§ az
@ 8 e=|
)
Vo
ar
where d; is a block of terms
M 1 0 0
0 » 1 0 ¢
(10) (rsrows and columns).
0 0 0 A 1
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It is convenient to let a; stand also for the matrix derived from {(9) by replacing
every a; by 0 except when j = 4. We can then write

{11) z = Za,, aw; =0 (i)
and we may set
(12) ;= hies + 25

where {(cf. §3.07) e = e, z; iz a nilpotent matrix of index r;, and

2 eo =1, exi=2zi= 2. ew; =0, ez;=0=2ze (2.
The part of z; which is not 0 is given hy the oblique line of l’g.gﬁ‘ﬁ{]) 2 is
obtained by moving all the 1’s one place to the right except the last which dis-
appears, and in general z™ — ! has a line of s starting in thé“mth eolumn of
(10} and runping paralle] to the main diagonal till it m{efs the boundary of
the block.

It is now easy to see the form of a scalar polynone’al g{z) or of a convergent

power series with scalar coefficients; for \*\
‘ ) i = U3 Jaeri—t
(13} ¢(z) = Zgla;)es = Z [Q(J\i é‘fwﬁﬁ‘k{ﬁyf _'Far_‘y.pl;g.ﬁ(r___(“h)lz_)!'___]

and the block of terms in g{z) whicl{.‘ééi‘responds to @; in (10) is, omitting the
subseripts for elearness,

Y I M O el OO

9 g Q{'\"’Ez_ 3T =1

L gty g~ ()

’ & g o'W e =2

:~\":.\ N g — BN
v ' g
g™

where all the terms to the left of the main diagonal are 0, the coordin.ates in
the first row are as indicated, and all those on a line parallel to the main diagonal
are the same as the one where this line meets the first row.

If the characteristic function is the same as the reduced function, no .two
blocks of terms in (@) correspond to the same root and eq, z; are the pl‘ll.](ZIpal
idempotent and nilpotent elements of z corresponding to As and (13) is the
same as (4). This is not the case when the same root occurs in more than one
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of the blocks (10) and, when this is so, the @; are not necessarily uniquely deter-
mined. For instance let

v 0 0!
(15) 0 vy 1| =9+ ea
[0 0 «~

Here we have

Il

&y = ¥éu, T2 ylew + 1) + €23

€1 = €11 & = ep T &3 72 =0, Zg = €13, N\
But if 9 '\:\
7'\
fu=en— en fiz = en fis < G
N
Joo = en — ex Ju = en f=ren
'\§
Ju = s~ ez + en — e, Jeo = en + apl Vs = em + en,
the f's form 2 set of matrie units and N\

x = '}’fu + ‘Y(fzz +f\ +f"3

w .dbraulibrafy org in
g0 that we might have chosen h=lu s Te T /o= en + o+ eyas idem-

potent, elements in place of ¢; and e;. (O

It should be carefully noted that j‘l, fz are not commutative with e, e and
in consequence different determinations of a multiform function may not be
commutative with each ot.hel\ For instance, if x is the matrix given in (13)
withy # 0, and y*isa p r@eﬁlar determination of the square root of v, we have
already seen in §2.13 that“determinations of z* are given by

230 =‘Y"6u — Mem + e33) — en/2v
N ,
g (= i — v + fim) — S/ 2y
N = e — ) — viem + oem + o) — ea/29

a3
S

g N = Uy — 2‘}'*613,

ana\th'ese two values of ! are not eommutative.

8.04 Roots of 0 and 1. The reduced equation of a nilpotent matrix of index
m is 2™ = 0 and this matrix can therefore be defined as a primitive mth root
of 0; the index m cannot be greater than » and it exceeds 1 unless z = 0. The
canonical form of # must contain at least one block of order »; = m, similar
to (10) but with A; = 0, and a number of like blocks of orders, say, r; (f =

2,3, ---) where r; < r, and E r; = n. This gives rise to a series of distinet

1
types in number equal to the number of partitions of n — m into parts no one

of which exceeds m, and « is a primitive mth root if, and only if, it is similar
to one of these {ypes.
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If z is a primitive mth root of 1, its reduced characteristic function iz a
facto'r ‘of Am'— 1 and hence x has simple elementary divisors. Let ¢ be a scalar
primitive mth root of 1, and let fy, fo, -+, f, be idempotent matrices of ranks

i—1
r, e, - -+ for which fif; = 0 (¢ # 7, Zf: = 1; for instance, if p; = 2 r;, We

i=1

may set

Fial

f“=zef" (6 =1,2 <+, 8 pe 41 =m).
ol
N\
The eanonical ferm for x is then X
o\

(16) ey + éffe + - 4 €, S

where the exponents #; are all different modulo m and at leagt" ;Eane e%, gay the
first, is primitive. Any pnmltwe mth root of 1 is then :{rm[ar to a matrix of
the form (16), and conversely.

8.05 The equation y" = x; algebraic funcnons "Let A, Az -ty A be
the distinet roots of z and u; = AV™a partzcular}}etermmatmn of the mth root
of vifori = 1,2, -+, 5 then“’ff"y'ﬂlb#ﬂlé}hﬁﬁérm@mf y are all of the form
e'ins, where ¢ is a primitive sealar mth root, of\l. Suppose that the roots of y are

BiL =y M2 T ﬁe?’?r!“ Ty Hin T ™y,
an e VST
Mal = Hay #'a\"—' E"’#n Tty b, T e""._u_,,

and let a particular choxce\ﬁ‘ the partial 1dempotent and nilpotent elements
corresponding to u; be f.,g and ki (& = 1, 2, --); also let the index of hin
be ngr, Then P\

#

£ \n
(18) 'S X y = Z(uifur + hin)
and hence _ '.f\

(19) 0 \ ym = Z(ufin + Rip)™ = S0+ Giik)
) 3

where g3 is the nilpotent matrix

(20) gin = (uafip + i)™ — 85,0 ax

Further, if A; # 0, (20) can be solved for A as a polynomial in gi; for we
can write (20) in the form

(21) g:ﬂc = alhljk + aﬂhi;k + -

and, since ey = mpl ' ;-5 0, the ordinary process for inverting a power geries
shows that we can satisfy (21) by a series of the form

(22) hiw = Bugie + B + o0 (B 0),
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there being here no question of convergence since any power series in a nilpotent
matrix terminates. It follows from (21) and (22) that the indices of g and
ki are the same,

We shall now show that the matrices fi;x and gsjx torn & set of partial idem-
potent and nilpotent elements of = provided always that z is not singular. If
this were not go, then fi; must be the sum of two or more partial idempotent
elements; for the sake of brevity we shall assume that it is the sum of two
since the proof proceeds in exactly the same way if more components are taken.
Let fix = d; + d; where d; and dp are partial idempotent elements of z and
let ¢, ¢; be the corresponding nilpotent elements; then ~

guk =0 + Ca, £ty = 0 = (01, ¢'\?\
Hence also hige = by + bg, bibo .= 0 = boby where b, 18 obt‘nned‘by putting ¢,
for gi in (22); and this is impossible since we assumed thaft f‘,;, and A were
partial idempotent and nilpotent elements of y. We hagé therefore the fol-
lowing theorem. \/

TuroreMm 1. If x 15 a non-singular mafriz, any\\determmatwn of y = ztin
can be oblatned by expressing z in lerms of partm{ Adempotent and nilpotent ele-
ments, say = Z(AJSi + g;\)ﬂamddpmuhblary Oxin

y = Z0ufc + g0V = DG+ meaR B+ 3moint — DA )

Here the binomial series lerminates and .\””‘ 18 a determinalion of the mth roof of

i which may be different for different terms of the summation if this root occurs
with more than onz pariial eleﬁig\nt

There is thus a two-srd} multiplicity of mth roots of z; the A}/™ have m
possible determmatmgs\in each term and also there is in certain cases an infinity
of ways of enoosing{the set of partial elements. Since the cancnical form is
independent of the.actual choice of the set of partial elements out of the possible
sets, any chome\\of such a set can be derived from any other such set by trans-
forming it by 2 matrix «; and since z itself is the same no matter what set of
partial ,Qlelhents is chosen, we have uzu™! = z, that is, u is commutative with z.
1t follows from the development given in §§7.01,7.02 and 7.04 that a matrix u
which is commutative with every partial idempotent element is a polynomial in z.

8.06 We must now consider the ease in which z is singular and in doing so it
is sufficient to diseuss mth roots of a nilpotent matrix; for the principal idem-
potent element of z which corresponds to a root g is the sum of those principal
idempotent elements of y which correspond to those roots whose mth power
is p, so that the principal idempetent element corresponding to the root 0 is
the same for both z and . Let the elementary divisors of ¥ be A™, ™, AR
then

sy,

i=ntnt o+,
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where y; is a nilpotent matrix of index m;, and we may suppose the fundamental
basis so chosen that the significant part of y, is

01
01
(23) K . B . (m; rows and columns).

01
0

To simplify the notation we shall consider for the moment only one. part ¥

and replace it by y and m; by n so that y* = 0 and .
ne.Y

n=—1
2 : N
= 2;Se; + 1 g W
1 "N

If we now form the mth power of #. then y™ = 0if m > z&ﬁd ifm<n

#—m
ym = 2 e“SG.' + ms ,x’.\\‘:
1 ¥
1f we define r and & by wWW.dbraulib:rai‘yx,org,jn
(24) G~m+bk=ngrm (k>0
then r > 2 and .
(25) yme: = 0, y"ei 1 m = 64y y"ffi\";:zm =Citm YL —Dm T &t r—Dm
,\i: f’i=1,2,"',k)
giving & chains of order » of invariant vectors, and similarly for ¢ = & 4+ 1,
EA 2, +«, m, we hav m — % chains whose order is r — 1 since for these values
of ¢ the last equation (25) is'missing. If we set » and v for blocks of terms

like (23) only withls and r — 1 rows and columns, respectively, then we can
find a non-&ng@r matrix P which permutes the rows and columns in y™ so that
N > ;; %

N |

(26} P-ymP = . % (kwsand m — k v's).

U .

We are now in a position to consider the solution of y= = z where x is a

nilpotent matrix of index r. In the clementary divisors of z suppose p eXpo-
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nents equal 7, ppequal r — 1, and in general pyequalr — 5 + 1 (7=1,2, .-, r);
here the p’s arc integers equal to or greater than 0 such that

2(r—j+1)p,-= n, m # 0.
i

The maximum possible exponent for any elementary divisor of ¥ is rm; let
g i=1,2 -, mj=1 2, ---, 7) be the number of exponents which equal

(;»'~j—i—1}m.—z'-1—1=(r—j)m+(m—i+l).
Forming y” and using (24} and the results of (25) we then see that N\
(27) Gi-te+ 215+ 0 + [m = Dgi_1w 1+ 9100 + (m — LJ‘Q’:}
N

b b gm = =520 g = 0)

<

> =G Dm — i+ g = w0

iJ P ;

These relations form a set of Diophantine equation$for the ¢'s. When a set .

of ¢'s have been found, we can find the matrix £Eef. (26}) for each part of y»
. - —1y,. . e ~ 0 - heine ativ

31:1(1 th'c“l'_rf set y = SRR é}\Q‘G;‘?F'ﬂﬁa]}fﬁb}?f?{%&“;ﬂ(?" {}; being commultative

with P7Y7P; and so chosen that £ is no’t.'smgulla.r.

8.07 The exponential and 10garitl}gi1{é‘functions. The function exp % = ¥

has already been defined in §8.02 bysthe series

RO
\<e“}= 1+ z y /!
\ 1

or in §3.03 in terms Of the partial units of y. Let the distinet roots of y be
M1, Moty Me and‘!e;bé, choice of the partial idempotent and nilpotent elements
corresponding Q}.”be fi, by (G = 1,2, -+, ki) s0 that

Y ki ki
@) A= D fu k= ks G=12 9

a \.d i=1 =1

are the principal idempotent and nilpotent elements of 3. If we set =z = &
we have

1]

= Z E (enifss + g0

where »;; is the index of &;; and

52 .y
S R Gy - DL

(29)

(30] Gi = hij 4
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The index of gi; is clearly »y;. Solving (30) for Ay;, we have the formal solution
hi; = log (1 -+ gy) and on using this or inverting the power series in (30) we get

3L hip= g~ 4gh + oo+ (1M Gy — 1.

Asin §8.05 it follows that fi;, g;; form a set of partial elements for z and, when x
is given so that ¥ = log z, the method there used gives the following theorem.

TrEOREM 2. If z t5 a non-singular matriz whose distinet roots are Ay, s
<oy Apy and 2f log i, log Xe, ¢ -, log N, are particular determinations of the
logarithms of these roots, then the general determination of log x s found @sfollows.
Take any set of partial elements of x, say fis, g5y (= 1,2, «++, r3 7 =3, 2" ---, ks)
where fi, gi; correspond 1o N; and the index of gi; 1 vay, let ke &evthe nilpotent
mairiz defined by (31), and let ki; be any inlegers, then . O

(32) log z = E 2 [(log A + kimy/ =1 )J'{Tﬂ: Rail

The discussion of the relation between different)teterminations of log z is
practically the same as for 2 and need not d zepeated.
If f; and k; are defined by (28\2’,wawp(fﬁ'ticlﬂ r détermination of log 7 is given by

raLl Lary . OrE.10

(33) Logz = E u[(log.ff;j';-]- }c‘-r\/—-—_l)f‘- + k.

This form of log z has the same"pfincipal elements as z provided leg Ay + ki
# log M; + R; for any ¢ » j,%hd even when this condition is not satisfied, it is
convenient to refer to (@b a8 a principael determination of log . _This deter-
mination is the one giyen by the series {cf. §8.02 (8})

(34) 1og\;g§;'“(x Sl - - DR — 1=

provided e&bli};.is 0 and the principal determination of log X: is used. The
series cony@%es only when the roots of # — 1 are all less than 1 in absolute value.

8.0 ”\ﬁie canonical form of a matrix in a given field. If the coefficients of &
matrik are restrioted to lie in a given field of rationality, the canonical form
used in the preceding sections requires some modification. The definition of
the invariant factors is rational as are also the theorems regarding similar
matrices .which were derived from them in Chapter 3; and hence if X and =z
are rational matrices which have the same invariant factors there exists a rational
maitrix P for which P~zP = X. The definition of elementary divisors reqguires
only the natural alteration of substituting powers of irreducible polynomials
for (A — X7
Let

a(d) = A"+ aAm " s o
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be a scalar polynomial in a field F which is irreducible in F; then the matrix
of order m defined by

—{ —dg - —Qm =1 T Om

1 o - 0 0

1 H 0

(35) = 0 .
o 0 .- 1 0

N\
has (M) as its characteristic function; since «(A) is irreducible in F, itvfollows
immediately that z, is an irreducible matrix in ¥ and that a({\z Sghalso the
reduced characteristie funetion. It is easily seen that the invz}ria.nt factors of
A — zare given by m — 1 units followed by a()). N
Again, if we consider s

'\'\.'
Za 1n v
Ta lm PN
Q¥ {r rows and columns)
(36) La = D\
www.dbraulibrary,b;:g,jln
SN g,

ay
LN

which is a matrix of order rm, we 406 as in §8.03 (14) that, if g(») is a scalar
polynomisl in A, R

NI AR CAVIGER VI
g e gr T PEN/C - 2!

&
g(xﬂ‘}j\“_...
'S M :
NS e
..\’:‘:; g(xu) .

PN “’.'

It foll‘eq\-'é that, if g{z.) = 0, we must have g¢ ~ U'(z,) = 0 and therefore af})
is a factor of g& — D(A) so that [a(X)]" is a factor of g(\). Butif we put g{i}
= [a(r)]” the first (r — 1} derivatives of g(x) have (A} as a faetor and so
vanish when X is replaced by 2.; henee g(x,) = 0. It follows that the reduced
characteristic funetion of z, is {e(\)]" and, since the degree of this polynomial
equals the order rm of =z, it is also the characteristic function so that the
invariant factors of z, are given by 1 repeated rm — 1 times followed by [a{A)]
The argument used in §3.06 then gives the following theorem.

TeeoreM 3. Lef cu(X), ao(M), -+, ()] be polynomials, not necessarily dis-
tinct, which are ralional and irreducible in a field F and whose degrees are my,
my, e, mg respectively; and let v, s, o, vi be any positive inlegers such that
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3
2 rimi = n; then, if Zo, 18 the matriz of order rym, formed from a:()) in the same

1
way as ta in (36) is formed from a(M), the matriz of order n defincd by

Lo,
Tay

(37) z =

Lar,

has an (W), ea(N), +- -, ax{A) as its elementary divisors in F. L
If X is any matrix with the same elementary divisors as z, it féHB‘:vS from

§3.04 Theorem 5 that we can find a rational nonsingular matrfx\P such that

PXP1 = z. We may therefore take (37) as a canonlcal form for & matrix

in the given field F. \

8.09 The absolute value of a matrix. Theabsolute value of & matrixa = | @patl

is most conveniently defined as R ;§\“
d S I iy ’N} !
T W] i prag.i
(38) IGT = ( X i I‘qad;“g)lg in
P q~’=1

where the heavy bars are used to d].simgmsh between the absolute value and
the determinant | a | It must be carefully noted that the absolute value of a
scalar matrix A is not the sam,e*as the ordinary absclute value or modulus of A,
the relation between them\bgmg

(39) :; [A] = nimod A
It follows 1mmec@tely from (37} that
(40) \wmod(ial—ibD<|a+b|<|a|+|bl

and from f ';

@ aprQpr E bsqbai = Z [ 2 (awb-’q — pa rq)(am sg — G bre)
+an fqzapss-|

we have
(41) lab] <Jellbl

Since the trace of a@’ is Sdpedng, the absolute value of a might also have
heen defined by

42) fal = trea’ = trd'a
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From this we see immediately that, if e is unitary, that is, a2’ = 1, then
(43) la| = nt, lad| =1b]

where b is any matrix.

No matter what matrix a is, ad’ is a positive hermitian matrix, semi-definite
or definite accordjmg—es @ is or is not singular; the roots ¢, g2, -+, g of ag’
are therefore real and not negative. If we set

2o=Zpg gy P=p.={(modia)? s=p=]al®=Zg,
O\
then

-1 (n\ @b/
e S 2(91 + 2 + e —+"' gr)r S (: . I)Srp Pr 2 (’:‘)p(!‘ 1)/’(':1)}= (:)Pr"“;

l".
< 3

whenee! 9.\

7 —1 '"‘j\'\’
rin —t w
(44) (T)p <pr & (r 1)\

If O'*(¢) is the rth supplementary compound 0{1'; {cf. §5.03), and « = p}
ie put for mod | a |, then p, = | C*{a) |* and we thay write for (44)

www . dbraulibr ary.Qr
" Irin < 2 =r 2r
(T) @i ST C )Ia]
and, gince (a’)~1 = C*—~a)/| a]|, e hme
s\ n—1=2
(45) nla—is < ]er] <m-1 ? |el—Ya

provided |a} # 0. This Lgequallty enables us to deal with expressions involving
negative powers of a. p \

Since g~ = (\-*- log a}, we also have
|a—1b;~\ (t —loga+hlloga)® — - b{<A o, a
(&) +llogal? + )b
and thekfc;re
(46) fa=th| < eltezal|p],

Putting & = 1 we alse have
47 |a—ll$n§_1+ellonai and Jat] < nlellowal

It is also sometimes convenient to note as a consequence of (41) with b = et
that

(48) lat] = ntlal-t

11 r = n, (44) gives Hadamard's expression for the maximum value of mod | a |
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8.10 Inﬁnite. products. As an illustration of the use of the preceding section
we shall now investigate briefly the convergence of an infinite product. Let
(49} Po=({0+a)1+a - (1+ aw

Go =G +lab0 e - @ +1aul,

then, if ¢ is an arbitrary matrix,

(50) |Po— 1] € Qn — 1 < &Ml —
(51) [Pac] < &1 c},
" Q)

(52) [P = Pl < Qu = @ < Do facker ™. (O

k 4
For on expanding P, we have g":"«:

Po=1+ Zap+ 2 Gyl -+ 2 apa"q.&’r\;i* ce
b4 Peq plgar v

therefore , x’,\\“

N
[Pa— 11 < D) lap] + O Vo Popfulibbary sc@in— 1

4 g o -

|Poc| < 3 + Z la, |+ 2 Ia;.:.ﬂf;iq'l—!“ Y e = Qnle] < EMeil]el

pelg

The proof of (52} follows in the‘same manner.
Hence P,. converges w. er(t;?f;n does, for which it is sufficient that Ze, iz abso-
lutely convergent in théssense that = ] @i | converges.

8.11 The absolut ‘\}ﬁlﬁe of a tensor. If w is a tensor of grade r, we define the
absolute value of &'by*

(53) “"‘;\ mod w = (r1S@w)t.

We sth;I"f:b’r' the most part consider only vectors of grade 1 as the extension to
tensdeg Jof higher grade is usually immediate.
If z and y are any vectors, we derive from (53)

(54) mod (z + 3 < modz + mody, modSry < mod z mod y.
If A is 8 matrix,
(mod Az)? = SAzdz = Szd’Ax.
By 86.02
A'd = Zgaa:Sai

* The r! enters here only because of the numerieal factor introduced in defining Suy

{ef. §5.16).
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where the ¢’s are real and not negative, and Sdig; = §; 80 that mod a; = 1;
hence

SzA’Ax = Zg:SiaSaiz = Tg; (mod Sagx)?
< Z¢; (mod a; mod 1)* = (Zg:){mod z)*
= | A[? (mod )7,
or
(55) mod Az < | 4 | mod x.
From {54) we then have ~
(56) mod Sydz < |4 | mod x mod y. ®
oA\
8.12 Matric functions of a scalar variable, If the eoordinates @b 2 matrix
a{t) = [} an,(1) || are functions of a scalar variable {, the matrix Ité»elf is called
a metric function of {, The derivative, when it exists, is deﬁn\ed as
. da .. alt + k) — a®) dapq‘
7 G = m B0 o]

% being a sealar. The fundamental rules of dlffe%nfiation 4re

d(a ) _ da + wwwd%bbﬁlmlbla}al,z (:I;f% u& da' d_a ’
a At di gLy Tdt db T \dt
to which we may add, when | a; = 0, _

_]_ &
(58} —g! @ a~l,

K\ di

do? _ da / da de?  do 2t da , da
i “a* @ @t Teget Yy

and in general, 1f(1’?}15 any positive integer,

G O dav _ [ a da/diy
\\: . di im— 1 1

Under the usual conditions each of the coordinates of a(t} is expansible as a

Taylor series and this is therefore also true of a(). If f(¢) is a scalar function,

fla) may or may not have a meaning. For instance, if f{) can be expanded in

a power series which converges for mod ¢ < «, then the same power series’ in

Other examples are

s

uf gt} = Zunt®, u. zealar, the serics intended here is Su.a?. Other definitions are
possible, ez, if we sot

G(ﬂ.) 2 ia E I'u .._n. ac u'J - C{iﬂ],l_.ﬂcfnl

ih

_‘.
where Z C{‘-"u’ t"-{i-“f r:r-;‘r; = 1, we still have G(t) = ().
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a converges when ja| < «; but if f(t) is defined by a Fourier series which is
not differentiable, f(z) will not have a meaning when the elementary divisors
of a are not simple, as is seen immediately on referring to the form of §8.03 (14).
I f{a) and f'(a) have a meaning and if da/dt is commutative with ¢, we have
df(a)/dt = f'(a)da/dl. Tor instance, if z is a eonstant matrix and ¢ = ¢ — =z,
then

dlog (t — x) 1

a0 =
(60} et i— =z

as is also easily proved directly. Q
The integral of a(t) is defined as follows, If C is a regular contenr in the

t-plane, we shall set N\
61) f a(dt = “ f 0yl H o\

L o m\\.
or if 1, s, - - is a series of points on € and t; a poind oﬁ the arc (I;, i 4 1}, and

if the number of points is inereased indefinitély"in such a way that mod

(t: 41 — &) approaches O for every interval, thé}av
www dbkaulibrary .org.in

(62) f a()dt = limv}:;;’«.'(f:.)(t.-+1 —~ 1.
c “’.:»
The conditions for the existence of this limit are exactly the same as in the

sealar theory. N
If M is the least upper{( md of | ¢} on € and L is the length of C, it follows

in the usual manner that

NY

(63) \U' a(t)dt ! < f | a(f} | mod dt < ML.

oYY 1 /e

As an illustration of these definitions we shall now employ contour integration

to provesome of our earlier results. If z is an arbitrary constant matrix and

€ a &role’with center ¢ = 0 and radius greater than | z |, then all the roots of z
lie inside C and on C the series

1 1
L

is uniformly convergent. Hence

o
1 dt 1 i
R = % - . = J_
(64) Ixi [ > Zm E * ﬁt,m.

~—~
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a result which may also be derived from the definition of log (t — z) in §8.07 and

) t_it'_'.c = [log (f — z)})e.

L
Iri Jo f— 2 27

and in general, if g{f) is a scalar function of ¢ which is analytic inga_ region
enclosing C,

Ve then have

RGN

(63) 0@ = 5 [ 1O O

P~z A\
Suppose now that |t — 2| = 8(the(t), ad] (2 — z), ﬁ\ﬁ(! a(f} where 6(f) is
the highest common factor of {¢ — z | and the coorditates of adj (¢ — 2). We

then have Y .

, (1)
(66) o aglﬂnyg ;@53 St)dt

and under the given conditions this J\ramshes if, and only if, g{}/e(f) has no
singularities inside €, that is, if ¢ ls’aﬁf,actor of g.  'We have therefore the thecrem
of §2.05 that «{¢) is the reduced~clﬁ3:racteristic function of r and that ¢z} = 0
only when ¢{i} is & faetor of g(\()

Sinece a{f) = o()/(t — %)Xisa polynomial in z with scalar coefficients and with
degree 1 less than the degree of ¢(f), say

Rrﬁ) =" "l ar™ 4 o A o,
equation (66)\‘&0w5 that g(z) can be expressed as a polynomial in z, namely,

\ \ i meo | g8}
®7) ..\:’\' 9@) = 5, %% fc e(l)

W¢ may also note that (66) leads to the interpolation formula §R.01 (4} if
the integral is expanded in terms of the residues at the zeros of «(f).

All of these results can be extended to unilateral series in x with matric
coefficients if care is taken touse g(f} {(t — 2)~t or ({ — x)! ¢{¢) according asg
dextro- or lagvo-lateral series are desired.

8.13 Functions of a variable vector, Before considering functions of a
variable matrix, we shall consider briefly those of a variable vector; for more
extended and systematic treatments the reader is referred to treatises on vector
and tensor analysis.

‘The differential of a function of a variable in any non-commutative algebra
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was defined by Hamilton as follows. Let f(x) be a function of & variable 2
dz & variable independent of z and ¢ & scalar variable; then ]

(68) df(z) = lim [& T 10 = &)
: :

=0
We shall assume tecitly hereafter that this limit exists for all the functions we
shall consider.
An immediate consequence of (68) is that df{z) is linear and homogeneous in
dr. Hence, if z = 3§, dv = ZdEe;, then

) . - ™ N\
df(:t) = Hm f(z(£| + tdfl)ei) f(EE;S:) af dsl

=0 t BE. O\

This leads to Hamilton’s differential operator O
= 3o, 2

(69) v 2 as‘ :“.'\\
in terms of which we may write (68) in the form O ]
(70) df(z) = (Sdev)f@f

In using this operstor it is frequenttydésavditivntytorplace it after its operand
and, when this is done, some artifice is ‘hecessary to indicate the connection
between them. This is done by a,ttvachmg the same subscript to both;: the
method of doing this will be clear ﬁ:om the following examples in which ¢ =

Saqe;, b = B¢, are vectors and A = || a;; || is & matrix.
m\
(O dex;

va ﬁ\ia—& €€}, Ga¥Ve = & — 5‘5‘ ey,
N ]
vSab = vas‘é;ﬂ} V.Sab, = 2 E (a“’ g + i ) &,
\“ : aEl a‘E

'§" dex; B8
0\ SV.VaSa.bs = — —
MY §50a79 — 0k af,"

\/ AV, = Z(Z %%) iy Voda = E_E: ee;8enl ),

: o
Sa.AV, = 2 o 9 g%‘; 8aA.Va = 2 oy _aEJ'

1) ! i
We can now consider the effect of a change of variable from z to* #. Let
§ = 3Ee, ¥ = Ze8/0k; then
(71) di = ZaSVede = Jdz

“Here #z denotes s new variable and not the conjugate imaginary. Instead of con-

sidering a change of variable, we may regard Z as a vector function of r.



132 FUNCTIONS OF MATRICES [VIII]
where

(72) J = 28V = || 85:/04 |

is the Jacobian matrix of the transformation. Similarly

dr = z 8% A% = Jdz.

Hence

{73) JJ =1

Again, since SdzV = SdiV = SdxJ'V, hence O
(74) v=JY, ¥=()w=J R O

From (70) and (72) we see that the differentials of J and J’ aré.:g“i.ven by
75) QJ = 8d2Va-d,, and 4 = dE.SV, = WadrSYe
dJ' = SdaVa-Jo A = VuSJudz = \@deur;.

This leads to the notion of contravariant and\eovariant vectors. If uis a
vector function of x and B vhebrewtdeprewdivgiifunction after the change of

variable, u is called contravariant if &

(76) 7 &I,

and covariant when <

(77 e T )

If 4, d; denote twa i{ltfief)endent variations so that di{dx) = du(diz), then

GBE = d(Jdw) = dadiz + T
N C = JadgoSVadiz + Jddas,

S

il

(78)

1

™

’..\". . . . s
Hence second differentials are neither contra- nor co-variant.
If A Is4 matrix whose coordinates are functions of z, the bilinear differential
form SdzAdsz when transiormed becomes

Sdlfz‘iddgf? = Sd1$J’£szx
so that, if this form is invariant, that is, Sd\fAd,% = SdizAdex, we must have
(79) A=JAJ, A = J’fi’.}', Adx = J'Adz.

b As will be seen below, this does not necessarily mean merely the result of substituting
% for z in the coordinates of u.
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Hence when A is defined in this manner, Adz is a covariant vector. If by
analogy with (78) we form & second differential of this vector and of 4'dz, we
get, using d¥ = Jdz,

dy{Adir) = &J'Adz + J'dy(Ad3)
di{A'dr) = dJ'A'd3 + J'di(d'd,%).
From (75) doJ’ = VuSJudex, diJ’ = V.SdizJ -; hence after a simple reduction
dy(Adviz) + d1{A dsz) = VeSdiz(J AT o + J A Ndyz + J'(d(AdiE) + di(d'diz))
= VSdiz(A, — J'ALNdz + J'(d(AdE) + d(4'da))

which may be written A
a = dy(Adyz) + di(A'dyx) ~- vanle;dzx ‘\ .
(80) = (A AdE) + (A — 9.SEALED
= J'a 'm"\V

so that a is a covariant vector. This vector may a@o be written
N
o = dyAdiz + did'dr — VoSdizd rH (A + A')dudyr.

wiww, dbraulibraty or

.in
Using a notation suggested by the Christoﬁel’symboﬁ; we now write

«)

[4; diz, dual = HEAd@Sh did 'z — VuSdizA di2)

N & (a—a* - f’—‘f-) dits
.i§ % ok t 6&'_, ot Eldﬂfﬁg

&
A X ,
=4 - A'dyz — VuSdizA,
(82) {dls-:, dgx}"\” '(A + AN Y dyddiz + du dot — VaSdizA 4dat)
=24 + AN 4; da, dal

provided tha:b\\f}i + A’| # 0. If we now set

] 4
O ) b = { i, m} + didiz
and use the relation (4 + A7)-J' = J(4 + A')7, we have from (80)
(83) b=Jb

go that b is contravariant.
Ifweset A = 3(4 + A") + 3(4 — 4) = B + C, we get from (81) and (80)

[4; diz, dex] = [B; diz, dez] + [C; diz, daT]
(84) (B: diz, duz] + Bdider = J'((B; di&, &3] + Bdds)
(C; diz, duz) = JIC; diF, daF].
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We shall require two transverses of the Christoffel matrices; these are defined

by
A LAl
Sb[A; a, c] = Sc[d;a,b], Sb {a c} = 8¢ {a b}

] ’

whence
24 a, b = VoSad [b + AbSavV. — A.a8bVa
(85) A 1
™—1E1
{a, bj A a; (A + A ) bI £\

To illustrate partial differentiation we shall consider functions hich depend
not only on z but also on a contravariant variable vector uf S Swei.  Since

= Ju and J = || 8%:/8¢; || is independent of w, we ha\ae
3 _SNea o _ NN ok a\*
By dw, fw; 85, Bw,
I B 8 Eﬁ\ £
a&; of; ag; CAE; Bw,

e yw.dl dbraulibrar QLg in
Hence, if ¥/ = Ze;0/0w;, V' = Ze;d; "0w;,then

\vf‘ v
(86) V=gV, \P=JV 4 dJ T
where d.J' = Suv.-J.. Herel¥ is covariant but V is neither covariant nor
contravariant, which megns(that formulae dependent on it will not usually be
invariant in form under\& change of variable. This difficulty is avoided as

follows. If we combmo 833 with (78) and replace dix, dox by contravariant
vectors a, b, then \

O A i
87 ‘\dﬁm = dJb = T b8V = J {a’ b} _ {é 5}.

“r

Hence “\'

O pol AV LAl
(877 R P AR it

and therefore

whence

— A !_ ] A“ tT}-
(88) D=v - {u’ v’} =J (v - {u vr}) = J'D:

D is therefore a covariant differential operator,
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Let v be any contravariant vector aond set d,» = SuV,-v.; then, if f iz any
function of = and u,

(89) dof = (SvVa + 84V e = (SeDa + 88.4V.)fa

where &, is the contravariant vector defined by
. A
{00) S0 = dyv + = Vu.
U, v

The tensor corresponding to the matrix V is known as the covariant deriva-
tive of v. ~

8.14 TFunctions of a variable matrix, The general theory crf‘\;,halytic func-
tions of & varisble matrix z = || £&; || is co-extensive wi‘ph\:fhai of n? scalar
variables and hence is so general as to be void of properties-péculiar to matrices.
This follows immediately from the obvious relation \:

AN

§ij = E €piTein \

. p=1 ":’\\'
which expresses the (4, ) coordinate asgd i )
exp: (3, 5) {VQ}&Q&%I?ul%bh(%?f_l;pgfgﬁlﬁtlon of z

The differential operator® eorresponding
SN o

(91 A |-
) A\ aki;

It is often convenient to ha feh special notation for the transverse A’ and when
this is so we shall set \

N

©2) b= H “é%l

NS

AJ‘

These operatgi};"may stand after their operands and the same convention as
was used Or’subseripts attached to V will also be used for A and & when

necessary’
The fundamental property of A is
(s df = tr (dea")f = tr {dzd)f

where f is any function of = and tr(4) stands for the trace of the matrix 4.
This result follows immediately from

tr(dzd’) = 2, 2, dka 5%1
i & +

s This operator first oceurs in a paper by Taber (1890, (84)) who however did not make
any systematic use of it. Macaulay in a tract published in 1893 (110) but written in
1887 used A consistently in applying quaternions to physical problems; he used the nota-
tion d for A, Later Born (385) used the same operator to great effect in his theory of
quantum matrices. Turnbull (436) uses & for A"
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8.15 Differentiation formulae. We collect here the principal formulae of
differentiation; in each case the operand is z or z’ and the dummy subscript is
omitted except when the medning is ambiguous without it. To simplify the
expressions we set a and 8 for the traces of the matrices ¢ and b, and £, for the
trace of z*.

Aarb = a’'b = a'zb'A, Aax't = ob = bz'aA
94
@y Alazb = ab = brad’, Alaz’d = a'b = a’z'H’A’
Arr = pr—1 +x—’xr-—2+ (I?)%r—-a_’_ _|_ (;rr*)r—l — .ﬁ’(r’ .,:\
(95) A =t + xr—-zi._f + xr—s(xf)z + .- + (Ir)r—l = (-'5:'}'“-\3.’
{
A B AL o = Al AN AL

Atr (axh) = Atr(bax) = a'b’ “

(96) '\’\.’
otr{axb) = ba O

(97) Atr(z7) = Ak = r(2)7 7, atI;:@(.)‘ = rrr L

tr (A)axb = ab = ¢ {:a}axb
(98) wwiv.dbraulibrary ofgin

tr{A)z” = rz7 &= tr (d)z”

T a ".;-;’f‘ al _ T a
e el e )
) Fo
'w\ * f
Atr [z a} =leH s)'{ z a}.
11‘ 8 \\ r—1 g
~E’~‘z§“ —rAxl =tr(z?) =&

100 oA )=+

N
N (Aux, — 2'Ax) 2] = (2,

\W
The proofs Jf these formulae are all very similar and we shall consider here
only the moshimportant leaving the remainder to the reader. If a = | agll,

b= [LE{;‘“H} 'then
‘ = 2 apb |

) 3
\ Aazb = H Fro Tpod grbri [ a’b;
ip r i
a’z’b'A’ = (Abxa)’ = (b'a)’ = a'b.

|
henee also

The remaining parts of (94) follow in the same way. It follows dlso from
(94) that

L i - —_ — —
BaZl = Aakaz™ 1+ Agzx) ~ 1 = 37 71 4 Agaraa” T 4 Alrir, T
= Tl 2’ Tt 4 Agrtrart — % 4 Auxtrl T

and so on; the remaining parts of (85) follow from (94) in the same way.
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To prove {(96) we notice first that tr (ab) = tr (ba) and hence in tr(@a, -+ @5
the factors may be permuted cyclically. Then, if ¢ = | ¢y; iy,

g
atr (CZ) == 2 5 E E cpagqp = 2 Ci€if = €
i Y n.q

Formula (97) follows by repeated application of (96); thus
Atr{z7) = Agtr (@ax™ ~ Y + Aptr (z] T )
= (27—t 4 A tr (2o~ ) + Agtr (2] 7Y
= @) Gy Q
= plx)r L ’ \:\
N

\

The remaining formulae are proved in the same way. Ao
If Ta\" is a scalar power series and f(z) = Zeuz", then$rom (97) and {98)

pir (f(z) = Traer =1 = f'(z) = (@)
so that the operators atr ( ) and tr () have the Q@rp& effect on such funetions.
Similarly, if F{z] = Za:r {x a'}} it follows fra\:m;‘(gg) that

*  Spww.dbraulibrary org.in

8y

(101) atr (F) = tr (8)F ~—:E’(?‘+ 8 {r f 1 . a}.

8.16 As an illustration of the a‘ﬁb’licat-ion of the formulae of the preceding
section we shall give some parfs of the theory of quantum matrices which are

applicable to matrices of finite order.
Let qu, ¢o -* -, 45 P Ps be the coordinates of a dynamical system and

$ the Hamiltonian fanction; these coordinates satisfy the system of ordinary
partial differentialzégiations
"\n

NY 89 . iR) .
102 iy = —, ;= — = 1:12’... .
( ) 3*'\\ q ap: 7 a4 ( ’ » D
We may{sﬁ'ppose that f = n?, a perfect square; for, if (n — 1) < f < nt, we
candnirbduce 2(z2 — f) additional coordinates gz + 1, Pr+1 7y Gay P which

do nof oceur in © so that these variables equated to eonstants are sotutions of
the extended system. When this is done, we can order the ¢'s and p’s in square
arrays || gi; I, || ps |} in sueh a way that py; corresponds to gy for all ¢ and 7.
Equation (102) then becomes

Lo 3%
4if 3 pﬁ: i 305

or, if the matrices || g |} and || psi || are denoted by ¢ and p and the corre-
sponding transverse differential operators by 3, and 85,

(103) qg= 829, p= acgj
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If we transform (103) by the substitution
g=eQe,  Q=Qull, p=ePe P =[Py,
where w is a constant matrix, we get
§= g +0Q = Quiv, = (P + wP = Pujee,
Also, if ¢ is kept constant,

tr (dgd,) = tr (c°'dQe 13 ,) = tr (dQe=*1d €=

with a similar relation for . Hence Q)
By = Pgem vt By = €°'Bpe v, ‘.\:\
NS ¢
Using these results in (103) we get « N

109 @4 Q- Q=05 B+ wP ~Pu) &b,

 being expressed in terms of P and @ and, if necessary,’ also £. Now from (96)

Quw — wQ = 3str [w(PQ — QP)) —(Pw —mP) = 3otr (w(PQ — QP)]
‘ R
and hence, if "N\’
www.dbraulibrary orgin
(105) & = % + trlw(P@ — QP)] =\$ + trlw(pg — ¢p)],
we have in place of (103) . ::: N
(106) Q= opt, P = —af

g0 that the transformation is.eé.:&)nical.
Q= 0 = P in (104), then

wQ ‘—'{’Qw = aP@! wP — Pw = —aq'ﬁ
OT on restoring tlzle\"é}ﬂonential factor
107y ",f’\ wWg — qw =0, wp-— pw=—3,9.

When §. js:}ii’en, these are algebraic equations which can be solved for p and g¢;
the solugion will of course generslly contain arbitrary parameters.
Under the same assumptions (106) becomes

(108) 3R = 0 = 9,8,

and if P, Q are independent variables, the only solution is £ = constant and
the only solution for § in (107) then has the form

* = trlw(pg — ¢p)]
apart from an additive constant, Equation (108) may then be written

(109) 2:(D — &%) =0 = 0,(% — &%.
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Now, if 71, re, + -, 7w are the parameters in the solution of {(107) we have
3O — 8% _ 5 apy 900 = 99 | 0 dgy 80D — §9)
are arg Py Ty 8gy

which vanishes in virtue of (109). Hence, if § iz expressed in terms of r,
e, -+, Tm by using the solutions of (107}, it will differ by an additive constant
at most from — tr [wipg — ¢p)l.



CHAPTER IX
THE AUTOMORPHIC TRANSFORMATION OF A BILINEAR FORM

901 If the variables of a bilinear form whose matrix is @ are {ransformed
cogrediently by a matrix z, the mairix of the new bilinear form is z'epWhen
this new form is identical with the old, the transformation is sajd“to he
automorphic, The problem of finding all automorphic transfurnm(iﬁﬁ?e of a is
therefore equivalent to solving the equation >

(1) r'ar = a. O ?
o
We shall assume for the present that | ¢ | £ 0 in which ¢aSehlso |z | = 0.

It follows from (1) that z'¢ = ax~'. Henee, iff_(?\}‘i\ﬁg sealar polynomial
1) [f@)a = fz")a = affay.
In particular, if f(A\} = (1verWdbragliyarneradd f(z-1), then
. 1zt i
2 = = —
@ VRIS Tl
provided jz 4- 1 | # 0, Henee f“rqr'h (1) y'a = —ay so that

= —flx)

3) \§ ’y"’ = —aya~\

Conversely, if ¢ sat-isﬁeg.@i'and] 1l —yj#0,thenzr = (1 + /(1 — yiisa
solution of (1) such that$z + 1 | # 0. Fbrfrom (3) f(5)a = af{—y) so that
o
:“\.:’ ' 14 y’ 1 - Y
W o Ta=—Lla=a0g_—T =gzl
.:\\ & 1-—-y’a al-i—-y ax—r,

Simiiarly,\"i:f.';fz — 1|0, wemaysetz = (I — /(1 + y) and then yisa
SO]UtimXOl}(B) such that |1 4 y | # 0, and conversely. The effect of the trans-
formatio’(2) is therefore to reduce the solution of (1), which is quadratic in =,
to that of (3), which is linear in y, except when both 1 and —1 are roots of z.

It is because (3} is linear that il is more convenient than (1); in particular if we
regard

(3% yvetay =0, y=[inll, a=]anll

as a system of »* linear homogeneous equations in the #’s, then the rank of the
systemn gives the number of parameters which enter into the solution when those
values of y (or of ) are excluded for which both 1 and —1 are roots.

Since the main problem is thus reduced to the solution of linear equations, it
may be regarded as solved ; the solution, however, can be given a somewhat more
definite form as we shall now show.

140
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9.02 The equation y’ = = aya™. We shall consider in place of (3) the more
general equation

(4} iy’ = daya~l, § = &1,

Forming the transverse we get ¥ = da’~'y'a’ ory’ = sa'ya’"?, whence

(6} ya~la' = a7ld’y,  a'yd 7! = aya™?

so that y is commutative with a—a’. Now from (4) we have y = sa~'y'a and
hence

2y = ¥y + dalya. N\
But if b is any matrix commutative with ™'/, then O\
(6) y = b+ da~t'a . O

is a solution of (4): for on substituting this value of y we get |
\
y — baya~t = b’ + da’ba’r — dabat & b =0

since, as in {5), a'ba’~ = aba~l. It was noted abov) e\t\hat 7 has this form and it
therefore follows that the general solution of (3) Is Obtal ned by setting

(7) y = b — FET auy&rﬂmﬂr‘aﬂwb

Ft should be noted, however, that two dﬂerent values of b may give rise to the
same value of y. N

9.03 Wae are now able to gne a..solutmn of (1) under the restriction that either
|z+1]=00r|z—1]# N \&ince the first condition is transformed into the
second if x is changed infe, —z, it is sufficient for the present to assume that
o4+ 1|5 0,andin th‘E orse the value of y given by (2) is finite. In terms of ¥
we bave P\

'"\'§~ . ]
1ty 1t+b—atbe (o4 ¥a)(a+ab - ba)

= 17 1 -b+alba
or, i A
® \\‘ ¢ = ab — ba,
then
o) = (a— o {a+o) |z + 1|0,
2 = (¢ — a)™ (@ -+ o) Jz — 1|0

Tt follows as in §9.01 that, if 2 has this form, it is a solution of (1
In place of (8) we may define ¢ by

(o o = —a'a~le = —cola’,

For from (7) and (8}
g = ba — a'b= —dalc= —ca~'a

!
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and, if ¢ is given by (10) and z by (9), then

d=(a +cy(@ —-c) P =(d —cala) (& + eala’)l
=(I—ca)(Qteat) ' =1 +ca)H (1 —ca™) =ala + ¢)7 (@ — )
= gz lg!
If @ is symmetric, (8) or (10) gives¢’ = —c, and ¢ is otherwise arbitrary except

that| & — ¢ | # 0;in particularif ¢ = 1, (9) reduces to the form of un orthogonal
matrix already given in 6.03. Similarly if a is skew, (10) shows that ¢ is an
arbitrary symmetric matrix subject to the condition that | a — ¢ | = 0.

The case in which a is symmetrie can alse be handled as follows, . We can set
a = b where b is symmetric and, if

.\:\'
y = b"-lxb, Z\‘} .
equation (1) gives yy' = 1 so that y is orthogonal. Cofiversely, if y is any
orthogonal matrix x = byb~!is a selution of (1). &

w7

9.04 Principal idempotent and nilpotent elements. Since x is similar to
(z')71, the elementary divisors which correspond ¥ roots other than —}1 oceurin
pairs with reciprocal rodts, If we arrange shése'roots in puirs g., ¢ ' and denote
the corresponding principal; “ﬂ@hﬁ?ﬁf’é&'ﬂtbéi’é'ﬁﬁ?h&'bv e, and e. ., respectively, we
may set

(11} = =Zlgle, + &) + g7 c—r(¥}’§-’5~r)“l] + files + £1) — Byley + £1)

where the £'s are nilpotent, egfed; are the principal idempotent elements cor-
responding te 1 and —1, if piesent as roots, and 6,8, are either 0 or 1. The
formof z—!is then L\
(12) = E{gr(e—f :+;$—r‘) + g-r‘l 8,(1 + Er)_lI + ‘9131(1 '{' El) T — 8'28—1(1 ‘f" g—d)“l
and (11) gives :f\'"”

"’\s.

\/ Y -1 o -~
(13) Q& €y =80, e, = e
“:; ry = as'—ra_ly s—r = a‘gfa“l
“\u' e, = teyal e Ge_a !
1= -1 ) ] = ey
(130 / b / £
£ = —a a~t, E,= —a - al
1-+& 14 £
We require also the formof z + z—tand z — 21 if
(14) @ =b +E,  f=£& i
then

2tz =gl + s + @) + g7 e + e (1 + )]
-+ 81[(31 + El) -+ 31(1 + £ — 82{{9—1 -+ E—L) -+ e_y{1 + 2_{‘)-,-—1}

a7t = Zgle — e, +8) — g.(e, — ) (1'+ )7
+ Billes + &) — el + &0 — 8:((e, + b)) = el 4+ £



[ 9.04] PRINCIPAL IDEMPOTENT AKND NILPOTENT ELEMENTS 143

or if
O 52 52
'Yfzgrar"‘g,-l = L g = —t
1 + C\‘.',-, 1 1+ El! T 1 + 6_1
- _ [ _ .
f\lg) 6. = g:br + !;J'rIl WE_‘-’ b, = g.f + g‘-l iﬂ'i——f_’
51 = QEI - Fn 0_1 = 25_1 — Y1
we have

(16) z+ Tt =32 [(gr + g:l) (er + e-r) 4 'Yr] =+ 8:(2e; =+ 'Yl) - 92{28_1 ;1-\‘}',1)
a7 z —2t =2[{g — g e + &) — g — g e + 8} Qb — iy
¥

where the elements grouped together are principal elements, Oy
The principal idempotent elements of z — %" are also prifcipal idempotent
elements of x except that roots 1 and —1 of = both give %he same root 0 of

z — «; no root of z other than =1 leads to the coalesding of rootsinx — 7%,

If we put A
(18) Qu = x + 7, 20 o= T
then v is a solution of (4) with 8 g“i“;ig I?‘lj&‘lﬂ?@%fﬁ'ﬁfgﬁ'@%}t-h $ = —1;also
(19} - 2;{3;:;i:i =0
which has the formal solution \\ N
(20) PSRN
Here t? + 1 = u?so that’(;\\-; 1)* exists whenever x is & selution of (1}. Con-
versely, if o) is any solufion of (4) with 5 = —1 and if %; is a determination of
(+} 4+ 1)* such thgt:.‘ '
1) 4 wla = duy
thenzisa sqgaion of (1}; for
~\ vla = via 4 ujg = —uap + o = ez

) !
) 2

since
(4 v) (s — 0) = uj — v; = L

If ¥ + 1 has no zero root, determinations of (#* 4 1)* always exist which are
pelynomials in 2* and therefore sutisfy (21); but even in this case this does not
give all solutions, The situation is as follows. The general form of v is given
by (17) if we replace ¢» — g7 by, say, 2k, and 68 — 201 by 3o, When £, is
given, then g, is determined; from (13) and (14) we have (6i 4+ 8 )a = a{d, +
5_,) and therefore, if k% + 1 # 0, the part of (#* + 1)} corresponding 10 &, + €
exists and satisfies (21); we therefore get all valid expressions for this part of
(#® + 1)} by using the form of the square root given in §8.05 with the restriction
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that the only sets of partial units that may be useda are those that satisfy (21),
However, since (1 + 1} = u, (16) and (17) show that we need only use the
idempotent elements ¢, -+ ¢_,, which are determined by &, in those parts of the
square root which do not depend on the zero root of v; ¢ :-md ¢ 1, however, are
not defined by v so that it is necessary in any particular cuse to consider how ¢,
and §; can be broken up into parts which have the required property.

If » has a zero root with the prineipal idempotent and nilpotent parts ey, 4,
then ¢? = ¢ shows that, although s,a = —ad,, we have

(21" eu’a = aeéy. ~N

We therefore seek to divide ¢, into-iwo idempotent parts, ¢; and eg T\ hich are
commutative with ¢ and therefore with 8. In forming the squ‘u‘&mot we then
attach the value +1to e and —1tee_,.
If &2 + 1 = 0, then g, = 7 and the corresponding part o l’u o1)bis 2605, 4+
5_,) + &% 4 8%, and it is readily shown from (15) thatfhi\ has n square root.
The clcta;ls are left to the reader.
If b is a solution of b’z = —ab, then so are also fcMan b and v = tan 26, A
short caleulation then gives z = (1 + {)/(1 —<'£) subject to the resirictions

already given; this shows the relations bebween the rational and irrational
solutions www . dbraulibrar y erg.in

9.05 The exponential solution. SOjr'x‘lé:' of the difficulties of the solution in
§9.04 can be avoided by setting

(22) expt(‘z) = &, = Log x

where a principal determlngﬁon of log zis to be used. Since this determination
of Jog 2 is a polynomialinng and z'ax = a, we have
AKX

(23) zfj%«Log ' = Log az—'a = af{Log z~")a"
7 \W
and therefore %
(24) \‘. 1 = 2'gza = eed0! — & taza—l
From(fi)“'
(25) 2= [(log gr) €r + N — (log g,.) e_, ..|_ ﬂ—r] + Blﬂl + 32(1? ie_l + 7}'—1)
ne=k — 3 - (s=r —r 1, —1)
and from (13}
(26) e: = (1-8__,(1,_1, n‘: = —an.,a! (S =7, "‘T'):
H eo=ana?, gl = —ane” (s =1, -1).
ence

2 + aza™ = Z{(log gr)e; +nr — (ogg)el, +n'] 4 8. + 8(mic., 4 .y)
. ' ’ ] i
+ Ef(logng e, — ., — (oggle, —nl] — 81 + bulmie | — 9.,

= 20smie_y,
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and therefore, if we set
(27) F=fe(f=08=01), W=z — 7if,

we have

(28) ¥ 4 awe™ =0, " —afe =0,
and
(29) w=Z [(101%- gf)er =+ 7 - (IOg gr)eur + "]—r] -+ 81711 + Ban_1.

The general value of = can therefore be expressed in terms of the solutiorsf the
equation discussed in §0.02. N
If we now start with « as a solution of (28} and define z by x = &%then
Y

xr = émf — e—awa—l = {l&q_w{]',_'l — ax.—la_q_l A\
4 '«(

add the terms =i to w. O

If ¢, is the principal idempotent. element corresponding to the root @, then
(29) shows that the presence of the F-term dependgdnthe division of e, into two
parts ¢, and e.; which satisfy the sceond set of egu}»t‘ibns in {26}; and correspond-
ing to these we have nilpotentpardbyaudibiGni arkich give tise to 1 and -1,
respectively, as roots of 2, or 0, =i as roots‘spf:a.

A form which gives rational pslr&yrgtzftei's is obtained from the exponential

and therefore 2 is a solution of (1); to obtain every solutio\n;’howmrer, we raust

solution as follows. Lot A\
e~1 z-1
80) = t'\%?.‘&/ D= Fi=rF1
ther
&~ 14t
(8D N TEI=
:"\\~
and A,\\~
™ arat —1 1 —pz gt 1 -2 ,
.’~.'Gt(}.—"1=--—-——-:-———-_~—?= ;=_-i
~O ara'+1 1+ere? 14z
)|
50 that (31) gives a sohution of (1), If, however, | z 4~ 1] = 0, then ¢ becomes

infinite so that (31) cannot give directly any  which has —1 as a root. This
difficulty arises from the faet thaf tanh{§/2) — o when 8- » w¢; but, since {¢ 4 1}
{t — 1) = & for all values of ¢ which do not have an infinite root, that is, one
corresponging to a root (26 4 1)w¢ of 2, henee z will be a solution of (1) so long
as the coordinstes of z are continuous funetions of the parameters involved
and the limiting value of z is finite and determinate.

9.06 Mafrices which admit a given transformation. In (1) we may regard x
as given and ¢ as unknown; the problem then is to find all matrices « such that

(327 zlar = a.
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If we agsociate with a = ]| a;; || the corresponding tensor of grade 2,
U o= D60,

we see immediately that (23) corresponds to setting (ef. §5.10)

(33) Mafr)u = u

Hence there is a solution if, and only if, = has at least one pair of reciprocal roots:
in this case IT:(z) has one or more roots equal to 1 and the various invariant
elements correspending to this root give a lincarly independent set of detg:\rmina-

tions of a. \

When it is required that | a | #¢ 0, another form of solution is preférable. In
this case ' = ar~’a™!; but, since r and z' are similar, we also ha,:\a&\:c = pap,
where, if 1, is one determination of p, the general form is \Y

| P |
(34) p = pib, br = zb, ibl?é[]'\’f
Hence it is necessary that 2! be similar to z, say N
- \/
(35) 2 = gz, \’f‘
which gives immediately P\4
www.dbraulibr ary or g»,m
{36} a4 = mer

Conversely, if p,, b, and ¢, satisfy the.glven conditions, it follows immediately
that (36) gives a solution of (32). A,

A\
. x"\\
Ol
a »
Ve d
P,
O
Z '\s v
» 4



CHAPTER X~

LINEAR ABSOCIATIVE ALGEBRAS

10.01 .Fields and algebras. A set of elements which are subject to the laws
of ordinary rational algebra is called a field. We may make this idea more

precise as follows. Leta,b, --- be a set of entities, F, which are subject to two
operations, addition and multiplication; this set is called a field if it satisfies the
following postulates:! ~

Al. a + b is a uniquely determined element of 7. N

A2, a4+ b=b+a R

A3, e+ B +e=a+ b+ O

o

A4. There is a unique element 0 in F such that o - 0 = ado
in F. o,

A5. For every element g in F there exists a uniqtfé;\element b in F such
that a + 5= 0.

revery element a

M1. ab is a unique element of F. \\
M2. ab = ba. )
M3. ab-¢c = a-be. WWW-dbraulib]}ai’y,ol~g,1n

M4. There isa unique element 1 in F, sj;éh that al = aforeveryainF.

M5. For every element ¢ # 0 in Ethere exists a unique element b in ¥ such
that ab = 1. N\ .

AM. a(d + ¢) = ab + ac, (L c)a = ba + ca.

R. If m is a whole numbéfyand ma denotes the element which results from
adding together m a’s, thefima # 0 forany m > 0 provided that a # 0.

If M2 is omitted the fesulting set is said to be a division algebra. This does not
imply that M2 dogsBét hold, only that it is not presupposed; if it does hold,
the algebra is said to be commutative. If M2, 4, 5 are all omitted, the cor-
responding sgt\ié,\eﬁlled an associative algebra. 1f the algebra contains an identity,
that is, an’e}e}nent sutisfying the condition laid down in M4 for 1, this element is
called the principal unit of the algebra. Postulate R is included merely a8 a
mat{eof convenience; its effect is to exclude modular fields. In consequence
of R #¥ery field which we shall consider contains® the field of rational numbers

as a subset,
As an example of a field we may take the field of rational numbers extended

by a eube root of unity,w = (-1+ +/=3)/2. Every number of this field can

be put in the form
a=uo+ fuo=a + B

t These postulates are not independent; they are formed so a8 to show the principal
properties of the set. In place of M3 it is often convenient to take: Ms' Ifa=0ax=0
impligs = = 0.

t Btrietly speaking, we should say ihat the field contains & subset simply isomorphic with
the field B of rational numbers. This subset is then used in place of Rin the same way a8
scalars are replaced by sealar matrices in §1.04.

147
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where « and 8 are rational numbers; the form of a is unique since & + fuw =
wtdogives(B—Hw=y—«a and, since w is not rational, this is impossible
uplegs g — 8 =0 =7 — a. Wesay that 1, w is a basts of F relative to the field
B of rational numbers, and F is said to be a field of order 2 over R.

As an example of an associative algebra we may take the algebra of matrices
with rational coordinates. Here any element o of the algebra can be put
uniquely in the form a = Za:e, where the a;; are rational numbers; and
et j = 1,2, -+, n) form a basis of the algebra, which is of order n%. We
also have an algebra if {be coordinates a;; are taken to be any elements of the
field 7 = (1, ) described above. This algebra is one of order ntbyer F.
Instead of regarding it as an algebra over F we may clearly look oh, it as an
algebra of order 2n? over R the basis being ey;, wesi{i, = 1,2, -« -‘;\n)’.

10.02 Algebras which have a finite basis. Let A be a set) of elements which
form an associative algebra and G a subset which is alse ah algebra. We shall
say that a,, az, <+ - , @, form a basis of 4 relatively ta GME (i) each a; liesin 4,
(ii) if every element of A can be put uniquely in the form

"N

(1) @ = 1t + 7202 + - PF Yeln

www.d braulibl'ary.qvg.i'n
where the v's belong to G. Though it ig’nét altogether necessary to do so, we
ghall restrict ourselves to the case in which G is a field which contains the rational
field, that is, we assume as a postulate®
BR. For every algebra A usider consideration there exists a non-modular

field F and a subset of elem n@s.c‘zl, g, * -+ , s sUch that (i) every element of 4
can be put uniguely in thefor
<" . _
PAY; 6 = 2 itk (viin F)
£\ 1

and (i) every,p%ment of this form belongs to A; and further the elements of F
are commutative with ay, a5, - -+ @a.

Sine€ the product of any two elements of 4 is also an element of A and can
thereforé be expressed in the form (1), we have

(2) ait; = E Viskthe (4, j=1,2+-, n)
& .

where v are elements of F. Since the law of combination of the elements of F
is supposed known, {2) defines the product of any two elements of 4 ; for

{3) (Eauﬂt) (Eﬁ‘a,) = Ea;ﬁ,—a.-a,' = Zaifyyinte.

If the values of the v's are assigned arbitrarily in F, it is readily shown that the
only _postulate which is possibly violated is M3 which states that ab.¢c = a-be;
and in order that this condition shall be satisfied it is necessary and sufficient



[10.03 ] THE MATRIC REPRESENTATION OF AN ALGERRA 149

that @i @;ax = a@;- ax for sll the elements of the basis, This gives immediately
the ‘associativity’ condition

4) 2 Yika Yial = E Yije Yokl Gjkl=12 .., 0).

10.03 The matric representation of an algebra. If we set

(5) A; = E Yiapfpe ('5 = 1: 2: e !n)i
7g=1 L

the law of multiplication for matrices gives
Aidi = ZViapVigatpe £\
and therefore from (4) ~\
Aids = Ziia Vgt = BVijada, ~\°

Hence the set of matrices of the form ZayA; is isomorphid with the given algebra
in regard to both addition and multiplication. Furﬁ:er, if the algebra contains
the identity, the isomorphism iz simple; for, if théne exist elements a; of the field
such that Za;4; = 0, it follows that, dbr- aullbral Y.org.in

(Ea.ﬂ“).?’ =0

for every element z of the algebra, afd putting z = 1 we get Za.a; = 0.
If the algebra does not have a gtincipal unit, all that is necessary is to replace

(5 by O
RN
(6) O Ai= D) Yasen
."\ / Pl

where 4, j,ni1 = 0\(3,_1 < 1) and Ynq1,65 = 6i5 = Yi,np,iforall f and j.

The import@ee of this representation is that it enables us to carry over the
theory of thé.: eharacteristic and reduced equations from the theory of matrices.
The main theorem is as follows.

TaeoreM 1. The general element © = Tkia; satisfies an equation of the form
(7 W bAnl 4 e f b =0

where b, is a rational homogeneous polynomial in the £'s of degree p; and if the
variable coordinates i, are given particular values in F, there exists a rational
polynomial

® I

such that (3) o(x) = 0, (&) if ¢ (A} 18 any polynomial with coefficients in F such that
¢(x) = 0, then o(7) is a factor of ¢ ().
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This theorem follows immediately from the theory of the reduced equation
as given in §2.05 and from the fact that the equation which is satisfied by the
general elernent must clearly be homogeneous in the coordinates of that element.

As in the theory of matrices, —b, is called the frace of z and is written tr(z).
The trace is linear and homogeneous in the coordinates and hence tr(z + y) =

tr(z) + tr{y).

10.04 The calculus of complexes. If zy, 2s, -, T, are any elements of an
algebra A in a field F, the set B of all elements of the form Z§z; (¢ .'(1 F) is
called a complez® or linear set. Any subset B of A which has the property that,
when z, y are any two of its elements, then £z -+ ny is also an elemeh$hof the set
isa complex. This follows readily from the theory of linear depefidence and the
existence of a finite basis for 4; it is also easily shown that any subcomp]ex of A
has & finite basis; the order of thls basis is ealled the order ofthe complex.

We shall write B = (%1, 2a, -+« , %,); this does not-imply that the z’s are
necessarily linearly independent. If € = {1, ¥e, --2\,) i8 & second complex,
the sum of B and C is defined by N

B + C = (xh By vty Ty y‘h}‘! :y:)’

www. dbraulibrary dr

that is, B + C is the set of all elements of the%‘orm z 4 3 where z lies in B and
yin €. Similarly the product is deﬁned by

(xlyfi'“lﬁf"‘,r,j=12o-- s).

The set of elements common to)? and € forms a complex called the intersection
of B and €; it is denoted by\B C. If B and ("have no* common element, we
write B ~ C = 0. If every element of € lies in B but not every element of
Bin C, we shall write. @< B; in this case B + € = B. A complex of order 1 is
defined by a singleselement, say ), and for most purposes it is convenient to
denote the comglex (x1) simply by «;; #; < B then means that z; is an element
of B,

If a complex B is an algebra, the product of any two of its elements lies in B
and hence B? < B; conversely, if this condition is satisfied, the definition of the
prodist BB = B shows that B is an algebra.

We add a summary of the properties of the symbols introduced in this seetion.

B+C=C+B, (B4+C)+D=B+1(C+D), BCD=BCD,
BAC=C~B (B~AC)~D=B~{(C~D),

B(C + D) =BC + BD, (C+D)B=CB-+ DB,

B4+ ~D)SB+C) ~B+D), BC~D) <BC ~BD.

*The term ‘complex,’ which was introduced by Frobenius in the theory of groups, is
more convenient than ‘linear set’ and no confusion is likely to arise between this meaning
of the term and the one used in geometry,

* To avoid circumlocution we say the complexes have ‘no element in common’ in place
of the more correct phrase ‘no element in common except 0.
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If B < C, then B 4+ € = €, and conversely.

If B< (,thereexists D < Csuchthat C =B 3D, B ~ D = 0.

I{ B = C <4 Dand ¢ ~ D = 0, we shall say that B is congruent to C modulo
D, or

B = C (mod D};
and if b, ¢, d are clements of B, €, D, respectively, such that b = ¢ + d, then
b = ¢ (mod D}, ¢ = b {mod D).

10.05 The direct sum and product, If 4 = (&, @z, *- aq) and B = (b,
ba, - -~ , bg) are associative algebras of orders «, §, respectively, over théssame
field F, we can define a new algebra in terms of them as follows. Le\t: ¢ be the
set of all pairs of elements (g, b) where e < A and b < B and tw0pais (a, b),
(a', b') are regarded as equal if, and onlyif,¢ =o', b =b". If wédefine addition
and multiplication by e \

7

@b + @ ) = @+, b+ 0"
(@) (¢, B) (@, V) = (aa, BB} )

8, b) = (o, ) (O (¢in F),
it is readily shown that the etV fosipmaulifisageiatiyvin algebra. This algebra
ie called the direct sum of A and B and is denoted by A @ B;itsorderisa + B.

The sct % of all elements of the formf(a', 0) forms an algebra which is simply
jsomorphic with 4, and the set B of\elements (0, b) forms an algebra which is
simply isomorphic with B; also g -

C=91+55,.\xj§1153=0=5391, o ~B =0

In consequence of this ifNs generally convenient to say that C is the direct sum
of % and B. 2

If we replace (9),53

' \’ E(as b) = (EG, b) = (a! 'Eb) (E in F)
®) A (o h) @, b) = (e, ),
we get ﬁﬁbiher type of algebra of order of which is called the direct product
of A\gn‘d’ B and is denoted by A ® B or by A X B when there is no chance of

confusion. If both A and B contain the identity, the set ¥ of elements of the
form (g, 1) forms an algebra simply isomorphic with 4 and the st 8 of elements

(1, b) is an algebra simply isomorphic with B; also®
¢ =98 = BY, U8B =(,1)=1,
and the order of € is the product of the orders of % and B. As in the case of

the direct sum it is convenient to say that A is the direct product of 9 and B
and to indicate this by writing ¢ = % X B.

L 4

s Strietly spesking we should use different symbols here for the identity elements of the

separate algebras.
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The following theorem gives an instance of the direct product which we shall
require later.

THEOREM 2. If on algebra A, which contains the identily, contains also the matric
algebra M (es5;4,5 = 1,2, + -+ , n), the identily being the same for A and M, then 4
can be expressed as the direct product of M and another algebra B.

Let B be the set of elements of A which are commutative with every element
of M; these elements form an algebra since, if biepq = €pebs (2 = 1,2, - - ), then
also

(b: + bilerg = gw(b' + by, bidiepe = epghiby. N

Further B ~ M is the field F, since scalars are the only elements of M which are
commutative with every element of M. PR
If z is any element of A and L

~

N
Tye = E : CipLCyqiy AN
i .\\‘
then :
Toelra = 2 : €ipTegilrs = &pTlqe = eﬂ( 2 : CipXly = Eralypg
i X 3 .

.dbraulibrary ,élzg: in

S

3
80 that z,, belongs to B."'}

E » Tpqpg = E ) e@:zséq}em o= E ) €ppléyg = T.

rq pai Ny ra

so that 4 = BM, which proyves the theorem,

10.06 Invariant subalgebras. If B is  subalgebra of 4 such that

(10) &~ AB<B, BA<B,
then B is called ag,g}wamant subalgebra of 4. TIf wesef
.f\\ A=B+C B~C=0,
the p;gd?ij‘t"(’)f any two elements ¢;, ¢; of C lies in A and henee
vV o5 = ¢y + by, cy< C, by< B
If we now introduce a new operation X defined by
(11) ci X €j = €,

then the operations + and X, when used to combine elements of C, satisfy ail thé
postulates for an associative algebra. To prove this we need only consider the
associativity postulate M3 since the proofs of the others are immediate. If
©1, €2, ¢ aTe any elements of C, then both e; X {¢2 X &) and (c; X ¢2) X ¢ differ
by an element of B from ejeqc;; their difference is therefore an element of both B
and ¢ and hence is 0

The elements of C therefore form an associative algebra relatively to the
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operations 4 and X. When 1his algebra is considered abstractly, the operation
X may be called multiplication; the resulting algebra is called the difference
algebra of 4 and B and is denoted by (4 — B).

The difference algebra may also be defined as follows, Let by, bg, -+ , s
be & basis of B and ¢, e2, - -+ , ¢y a basis of C, so that by, bs, <+, bs, ¢, -+, ¢y
isa basisof A, Since A is an algebra, the produet ¢;¢; can be expressed in terms
of this basis and we may therefore set

(12) cic; = Zyiacs + Zdiabe.

The argument used above then shows that ~
(13) dd; = Zyipds O\
defines an associative algebra when B is invariant. > N

1t is readily seen that the form of the difference algebra is,ifggilgpendent of the
particular complex ¢ which is used to supplemert B in A. j~:Foi- ifd =B+ P,
B ~ P = 0, it follows that to an element p of P there earrésponds an element ¢
of C such that p — ¢ < B;and we may therefore chbdse a basis for P for which

NY; .
pi=t+ ¢ \’\ (< B;i=12 7).

Equation (12) then gives www,dbraul;jbl‘a;'y.OL‘g.in
papi = SyisPe 4 by o
where bii = qig; + 95 1 c;q, + Tbijebr — Zvinbr < B,

and the salgebra derived fron}{bin's in the same way as (13) is from (12) is ab-
stractly the same as before, )
If the algebra A doeg Aot contain the identity, it may happen that 47 < 4,

A < A2, and so on. ., &ince the basis of 4 is finite, we must however have at
some stage NS

)
v Am < Ammy A = AT

the integef;.:m\ is then called the index of A. The most interesting case is when
A" = @uthe algebra is then said to be nilpotent.

heén N, and N are nilpotent subalgebras of A which are also invariant,
then N, + N, is a nilpotent invariant subalgebra of A. This is shown as
follows. Let m, mas be the indices of N, and N respectively; Ng = N1~ Nz
is nilpotent and, since N3' < NT* = 0, its index ms is not greater than my. Now

(N1+N2)2 = NE +N§ 4+ NiN» + NN,
<N AN N EN M

since it follows from the invariance of N and N, that ¥1¥2 and N3N, are con-
tained in both N, and ¥» and therefore in Ns. Similarly

(N: + Noy SN[ +N: + N,
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so that, if m is the greater of m; and ms,
(Ni + N)" < NPT+ NT+ Ny =N,
and henee N; + N is a nilpotent subalgebra. Further

AN, + No) = AN + AN <N+ N
(N, + NoA = NuA + Nod < N+ N2

so that Ni + N: is invariant. It follows that the totality of all nilpotent
invariant subalgebras is itself a nilpotent invariant subalgebra; this al,g\ebra is
called the maximal nilpotent invariant subalgebra or radical of 4.

An algebra A which is not nilpotent and which has no radical, {s)said to be
semi-simple; if in addition it has no invariant subalgebra, it is said\to be simple.t
We have then the following theorem whose proof we leave to tﬁé;éader.

TaEorEM 3. If N is the radical of a non-nilpotent algebkaA, then (A — N) is
semi-simple. \/

10.07 Idempotent elements. In the precedin; "g‘e\c’cion we defined a nilpotent
algebra of index m as one for which A™ = A=~ »# 0. An immediate con-
sequence of this deﬁnitiomiawthhta@m@lﬁﬁ@m of a nilpotent algebra is nil-
potent; we shall now prove the converse by showing that, if 4 is not nilpotent,
it containg an idempotent element.

™
3

TuaEOREM 4. Every algebra which is not nilpotent conlains an idempotent element.
Let 4 = (&, 82, -~ , a,){b} an algebra of order a. If a4 = A for some
element @ in A, then az 2.0 only when z = 0; for a4 = A implies that aa,
@y, - -+ , GG, is & basis, Which means that there is no relation of the form
AS
K Y%
except when every £ = 0. Also, if ¢A = A, there must be an element ¢ in 4
such that qe‘é_\a; this gives ae® = aeor a{e? — ¢) = Qand hence ¢® = e,

The thqer’ém is true of algebras of order 1; assume it true for algebras of order
less ,tha@d. If a;4 = A for some gy, the theorem has just been shown to hold.
If a;AV< A for every a. in the basis of A, then, since (¢;4)? = a;da:4 < a4,
either a;4 contains an idempotent element or, being of order less than «, it is
nilpotent. Now {da:;4)" < A(a;A)" and therefore 4a;4 is also nilpotent; but

A-Aa;d < AaA, Agd-4A < Aa;d

8o that Aa;A is invariant and being nilpotent is contained in the radical ¥ of A.
Hence

0 = 2o = aZta;

A3=2Aaix‘1£N

¢ Bimple algebras are usually excluded from the ciass of semi-simple algebrae; it geems
more convenient however to include them.

The statement that 4 iz not nilpotent is made in order to exclude the algebra of order 1
defined by & single element whose square is 0.
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so that A%, and therefore also A, is nilpotent, contrary to the hypothesis of the
theorem. It follows that some @:4 is not nilpotent and being of lower order
than A contains an idempotent element by assumption. The theorem is there-
fore proved.

The following lemma is an immediate consequence of Theorem 4.

Leava ). A non-nilpotent algebra cannot have o basis every element of which 1s
nilpotent, nor a basis for which the trace of every element 15 0,

Tor, if every element of the basis is nilpotent, the trace of every element of the
algebra is 0 whereas the trace of an idempotent element is not O since thr\only
roots of its characteristic equation are 0 and 1.

I ¢ is the only idempotent element in ede, it is said to be pre’-m:it{ve. An
algebra which is mot mupotent contains at least one primiti¥e) ddempotent
element. For, if ede contains an idempotent element e, # e, Qhen efe — 1) =0
s0 that eiedee; does not contain ¢ — & and is therefore of 10§wcr order than ede;
since the order of ede s finite, a succession of such steps m:ﬁst lead to a primitive
idempotent element. '

. x'\\:
TreoreM 4.5. A simple algebra has a principgh .
www.dbraulibrgry,org,jn X

If A is not nilpotent, it contains an idempotent element e.  If ais any element

of A, we may set @ = a1+ a2 where ¢

a = ea + e — eae < ed + Ae, fy = &6 — O, eqs = 0 = a8,
We ean therefore find a compleX ! such that
ne
A = ed 1+ Ae 4+ A58 ed + Ade ~ 4, =0, ed, = 0 = A

If Ay 18 not nilpotent('i’t'homains an idempotent element ¢’ and ¢ + ¢ iz also
idempotent sinee gel =0 = ¢'e. We can therefore take e - €’ in place of ¢ 5o re-
ducing the ordergdi 4,, and after a finite number of such steps we arrive at a
stage at whigNi containg no idempotent element and is therefore nilpotent;
we shall now assume that ¢ was chosen at the start so that A, 1s nilpotent; we
ghall alsd"h’ssume that ¢ is not an identity for 4 and there is no real loss of
genetalily in assuming in addition that it is not a left-hand identity.

Tet r be the index of 4;. Ifr > land 7 0 is any element of A]™ then
2d; = 0 = A, ex = 0;if r'= 1, then A, = 0 and since ¢ is not & left-hand

identity, e < ed < A 80 that thereis ana # 0 such that ex = 0; we have there-
fore in both cases

zd; = 0 = A, ex = 0.

We now have Az = edr, AzA = edzd; hence Az < A, Aza < A and AzA is
therefore an invariant subalgebra of A; if Azd = 0, then Ag is invariant :?nd
not equal to 4 ;if Az = 0, then rA4 is & proper invariant subalgebra unless it is 0
in which case X = {«} is & non-zero invariant subalgebra of 4. In the case of &
simple algebra it follows that ¢ is an identity.
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Corollary. An algebra without a principal unit is nol semi-simple. For
(Az)? = Axdz = Azedx = 0if 4, = 0.

10.08 Matric subalgebras. Let A be an algebra which contains the identity
and let ¢; be a primitive idempotent element ; then ¢, = 1 — €18 also idempotent,
and, if e;de; is denotled by A, then

= (o) + e A6y + £a} = A + Ase + Ao + doa

Suppose in the first place that 4 .4.. is not nilpotent; there is then some @y <
Ay, such that A .,,a:., which is an algebra, is not nilpotent since otherwise™ .14,
would have 2 basis of nilpotent elements, which is impossible by Lemma¥; hence
gome such A aae contains an 1demp0tent element 5ay ey = a“alg (NED e 15 mot

primitive in A, say e: = ¢ + &", €¢”" = 0 = ', where ¢’ 1'3 prumtne in 4,
then a2’ > 0 since otherwise N
e = g’ = agape = 0; '»\'\‘
also ¢’ < A, since 0 = e = e’ + ee” 50 that {1&" = —ge’ and therefore
9.\

818 = —e]_e 6 =..&:’

and similarly e'e; = 0; “e‘fh“iy ﬁl?é'f’é'llé{’éa@k%r&f?u ae’ and a4, = e'ay in place
of a1z and aa(, which gives ¢’ in place of e;. “YWe can therefore assume a;; so chosen
that e; is primitive in 4 ; algo, since espfises = e3 = ¢, then, replacing an by
€20y, if necessary, we may assume egailf‘: ao; and similarly a0 = ay..

The element a;.a,, is not 0 smcg

2
0210123\6@ andie-dntiz = €9 = €4

and it is idempotent sigce
\ ¢/
(a\gqgl)ﬁ = g~ Anthz- 421 = Gigfeln = {1202

But aiptn < Ajldd € Ay and, since e, is primitive, it follows that a;ses = 1.
For the sake o\symmetry WE NOW put any = e, d» = €2, and we then have a
matrie subzglgébra of 4, namely a,,, 4,2, a2, 221, )

Sing€ Win(diad wm) dre = (Aadi)™ it follows that Ay.Aw and 4 .-y, are
either both nilpotent or both not nilpotent. Suppose that both are nilpotent;
then, since their produet in either order is 0, their sum is nilpotent and, beeause
(Are + Ag)? = A4 + A A, it follows that

Nl = Ala + Aul + AlaAal + Aa]Ala
is nilpotent. Now

ANy = (A 4+ A1e + A + Ase) (A1e + Ao + Aiad o + Amdie)
= Apdia + Andida 4+ dieda + Aredadie + Aadia
'+‘ AalAlaAal + A- nraAal + 4‘1a:xA alﬂ‘ila
<N

Bince 4:iAp, = 0 (p # ), Ad ;e € Ay Similarly N14 € ¥, Hence N, lies
in the radieal of 4.
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Suppose that we have found a matrie subalgebra a;; (7,7 = 1,2, -+ ,r — 1)

. guch that e; T_{ln.‘_(ﬁ =1,2, .-+, r - 1) are primitive idempotent elements of A ;

lete, = 1 — 2 e; and set 4,; = e;Ae; as before. Suppose further that 4 .;4:a
1

is not nilpotent for some ¢; we may then take ¢ = 1 without loss of generality.

By the argument used above there then exists 2 primitive idempotent element

€, = Grr < A A1, and elements a, < Ao, &1r < Ay, 5uch that

Al = Grry TG = 1y
Urslr1 = Gy, @y pGyr = a1y
™\
If we set
N
. 2\
G;r = Qi1lir, Qry = Qg (g = 1’ 2,.\. 2 1)’
\
then @, =< 0 since a;Ge = @, and ay; (4,5 = 1,2, - - -, r) forgra, matric algebra

of higher order than before. s,
Again, if every A .:4 .. is pilpotent, it follows as above.th}t each 4;.4 .15 also
nilpotent and hence
o

r—1
N —1 = To a jor " a\‘At‘a
=i 42521 (%W\:}Tdérgnj_j!aé;r%%Lg 1{-11 )
having & nilpotent basis, is itself nilpotqﬁt,;" and it is readily seen as before that
it is invariant and therefore belongs to-the radieal of 4.

We ean now treat 4., in the same way as 4, and by doing so we derive a set of
matric algebras My(a%;; 4,7 = K;Q, .-+, 7,) with the identity elements

'\‘ } rp
\ \ p = 2 a%;
\&" o
such that Za, = Ajalso
7\~

NOT W= 2 et adaida)

2 8
) pHy

is contaiﬁiéi:l’ in the radical N of 4. We have therefore the following Lemma.
\ 3
Lemya 2. If A is an algebra with an identily, there exists a set of mairic sub-
algebras My, = (@363 =12, r,) with the principal wnits

ap'_—zaf'i ) (p=1;2:"'}k)

i=1

such thal a,a, = 0 (p # ¢) ardTap =1, and such that

N = z (a,da, + aydo.day)

pP™q

tes in the radical N of A.  Further each ¥, is @ primitive idempotent element of A.
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Corollary. Bi = axdax + N'isan invariant subalgebra of A. For
AB: = Zad(wda + O, tda, + sdade,)

p™g

- a-]gAak-{- ,N'JI =

10.09 We shall now consider the properties of the algebrag a,Aa, where a,
{p=1,2, -+, k) are the idempotent elements defined in Lemma 2.

LemMa 3. ayda, is the direct product of M, and an algebra By in uhzch the
principal unit is the only idempotent element.

The first part of this lemma is merely a particular case of T hecrem 2. That
B, contains only one idempotent element 1s seen as follows. If\e 15 & primitive
idempotent element of By, then af,¢ and o ? (e, — e) are dlstl;net and, if not zero,
are idempotent and lie in af,Aa};; but this algebra contamaonly one idempotent
element sinee a?, is primitive; hence a7,(a, — €) = 0 and therofore e = a, is
the only idempotent element in B,. RN

Lemma 4. If B is an algebra whose principal m\ft 1 15 #ts only tdempotent element,
any element of B which is s‘i"riﬁwﬁlﬁ’r@%lﬁﬁﬁéﬁ‘?ﬁ Wynd the totality of such elements
Jorms the radical of B.

The proof of the first statement is 1mmed1ate for, if « is singular, the algebra
{a} generated by a does not confain'the prineipal unit and, since B contains no
other idempotent element, o mx]potent by Theorem 4. To prove the second
part, let z and y be mlp@\éd}m‘but 2z = z + ¥ non-singular; then 1 = z7'» +

27y =2, + 4. Here xr y, are singular and therefore nilpotent. If mis the
index of z;, then 7

P e e i

ang thig is 1m§9¥351b]e since 4, = 1 — z, is nilpotent. Hence z is also nilpotent
and the totahty of nilpotent elements forms an algebra; and this algebra is
mvanant\smce the product of any element of B into a nilpotent element is
singhlar and therefore nilpotent. It follows that Bis a division algebra whenever
it has no radical, that is, when it is semi-simple.

10.10 The classification of algebras. We shall now prove the main theorem
regarding the classification of algebras in a given fleld 7.

Turorem 5. (i) Any algebra which contains an identity can. be expressed in the
form
(14) A=8S+N

) 7 An ¢lement of B is singulor ¢n B if it does not have an inverse relatively to the principal
idernpotent element of B.



[10.10] THE CLASSIFICATION OF ALGEBRAS 159

where N 18 the radical of A and 8 is o semi-simple subalgebra ;=8 1s not necessarily
wnigue but any two delerminalions of it are simply isomorphic.

(ii) A semi-simple algebra can be expressed uniquely as the direct sum of simple
algebras.

iy 4 s.?,'mple algebra caz be expressed as the direct product of a division algebro
D and a mmplg matric algebra M ; these are not necessarily unique but, if Dy, My,
Dy, M. are any two determinations of I} and M, then Dy~ Do, My o Mo,

We have seen in Lemma 2 that A = Ze¢,da, + N', where N/ < N, and also in
Lemmas 3, 4 that a,da, = M, X By, where M, is a-simple matricalgebra. The
first part of the theorem therefore follows for A when it is proved for any algébra
like B, and when it is shown that the direct product of M, by a division algebra

is simple; for, if B, = Dp + Ny, then Dy isa division algebra and R \J)
apda, = My X Dy + M, X Ny, .»:’;M;}NpﬁN-

If the field F is one in which every equation has a root, ¢he field itself is
clearly the only division algebra and hence M0, = My in this case part (i) is
already proved. Further, the theorem is trivial for algebras of order 1; we may,
therefore, as a basis for a proof by induction ass et is true for algebras of
order less than the order aof 4. www.dbraulibs O\

If the field F is extended to F(§) by t ea guﬁgtri\éﬁ’ ¥} algebraic irrationality
£ of degree p 4 1, we get in place of 4 an a}g’(—fbra A’ = A($) which has the same
basis as 4 but which contains elementsvhose coordinates lie in F(£) but not
necessarily in F; all elements of A.aréj also elements of A’. Regarding A we

have the following important lemQé.
3

R {
Liwna 5. If N is the radicabdf A, the radicalof A" = A() &8 N' = N .

Let 4 = C 4 N, O & N = 0, and let the radical of A’ be N"; then clearly
N’ > N'. If N” > there is an element of N of the form

,\:a}; o 4 af + o0+ GE (e:< €, co # 0).
Since ¢” is p\il};;Jtent,
Q- 0 = tr(e”) = trled) + ftr(e) + o
and since tr{co), tr{e1), - - - are rational in F, each is separately 0. But, if @, a2

are arbitrary elements in 4,
ac’ay = U1l + acitef + 7

lies in N” and, since each aicias 18 rational in F, the trace of each is 0 as above.
Henee the trace of every element in Aced+is 0 from which it follows by Lemma 1
that Acyd is nilpotent and being invariant and also rational it must lie in N (cf.
§10.06). But Acod eontains co since A contains 1 whereas ¢ ~ N = 0; hence no
elements of N7 such as ¢” exist and the lemma is therefore true.

We may also note that, if B, C are complexes for which B ~ C = 0,and B, ¢’
the corresponding complexes in A’ then also B’ ~ C' = 0.
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Suppose now that the identity is the only idempotent clement of 4 and that
the first part of the theorem is true for algebras of order less than o, Leta 3
be an element of A corresponding to an element @ of (4 — N} and let f(0) be
the reduced characteristic function of @; f(A) is irreducible in F since (4 — N)
ia a division algebra, Since f(@) = 0, it follows that f(a) < N and hence, if »
is the index of f(a), the reduced characteristic function of a is [f(A)). I we
adjoin to F a root £ of f(»), this polynomial becomes reducible so that in 4" =
A(£) the difference algebra (4’ — N’) is no longer a division algebra though by
Lemma, 5 it is still semi-simple. If we now carry out in F(¢) the reduction given

in Lemma 2, say N
A' = Ze,A'e, + N*, O\
e A\
either the algebras ¢,4’¢, are all of lower order than o, or, if A{ =/¢,4"¢,, then it
containg a matric algebra M’ of order n? (n > 1) and, if welsét A° = M'B’, as

previously, B’ is of lower order than «. In all cases, t}}{{ﬂifore, part (i) of the
theorem follows for algebras in F(£) of order o whentis true for algebras of
order less than a, and its truth in that case is assg{Qt}d under the hypothesis of

the induction. ¢*{
W o)
e may now asgume \®
www . dbraulibrary.ofgin
A =él + N, ‘Y»CgmN = 0,

A =8+ N, '8 AN =0,

where 8’ is an algebra simply isgm})'r'phic with (4’ — N’); N’ has a rational
basis, namely that of N (cf. Lemma 5).
If ¢, €5, + - - i8 & basis of {h}:n, gince A is contained in 4’ we have

N
G=si+my, &<, mi<N, G=1,2-)

and, since C ~ N =\0-implies ' ~ N’ = 0, it follows that s|, s;, - - - form &
bagis of §', that is/ W& may choose a basis for $’ in which the elements have the
form \O~

LN\ .
R Ci + nio + naf + - (ei < C,nyy < N)
wher€ ¢;, 7., - -+ are rational in F. Moreover, since C is only determined

moduld’ ¥, we may suppose it modified so that n is absorbed in ¢;; we then
have g basis for 8’

(1) Si= it nat+ oo+ gl = o+ .
When the basis is so chosen, the law of multiplication in &, say
(16) 8i8; = Zo,8;

has constants ¢, v&:hich are rational in F; for s; = ¢; mod N’ and ¢; is rational,
If we now replace s; in (16) by its value from (15) and expand, we have

F ! L
el + ey + el + niny = Zogor + Eoﬁ*n;,
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but n:n: < (N")? and therefore

! i’ ’
G ey + niG = Doy, + Zagm, mod (NP,

a relation which is only possible if the coefficients of corresponding powers of £
are also equivalent modulo {¥')? and in particular .

£:0; = ZUIijka mod (N},
Conscquently the algebra 4, generated by ¢; (i = 1, 2, -+ , o) contains no
element of N whieh is not also in N? and hence, except in the trivial case in which
N = 0, the order of 4,1isless than @. By hypothesis we can therefore chotse ¢

rationally in such a way that cic; = ;.0 that is, such that € is an.alpebra;

part (i) of the theorem therefore follows by induetion. )
. '\

10.11 For the proof of part (i) we require the following lemmag,:‘«,

Lemma 6. If A contains the identity 1 and ¢f B is an z'nvar?@hi subalgebra which
has a principal unit e, then \

A=B® (- Al —a
Since ¢ is the prineipal unit of B, which is in-vafﬁ}nt, ede = B;also eA{l — ¢)

and {1 — e}A4e are both 0 since Aehnd %Ef?{é%'ﬂﬂ’ #8&;'1F b is any element of B,
then (1 — e}b =b ~ b =0,b(1 — ¢} = b b= 0; hence

(17) A =cde+ {1 —e)A( — s ede~(l — ) A(l —¢) = 0.

Further ede-(1 — €) A(1 — ) = Q= (1 — 6} A(1 — €)-ede, so that the sum in
(17) is a direct sum. )
N

LemmMa 7. Every invazfant subalgebra B of a semi-simple algebra A is semi-
simple and therefore confains a principal unl.

Suppose that I)}h}g}a radical N ; then

.:§4"N < B, (AN» =ANA-N<BN <N

so that A,Mri’é' nilpotent. But, since A? = A, we have {ANA) = (ANYy4;
hence {N;Ah a nilpotent invariant subalgebra of A which, since A contains an
identity)is not 0 unless Nis 0. But A has no radical; hence N = 0 and B also

has no radieal. - . _ _
In consequence of these lemmas a simple algebra is irreducible and a semi-
simple algebra which is not also simple can be expressed as the direct sum of

simple algebras. Let

4 =Bl®Bz€B @B,,:C'IEBCgGB @Cq-
be two expressions of 4 as the direct sum of simple algebras and let the principal
units of B; and C; be b; and ¢; respectively; then 1 = Zb; = Z¢;, We then
have € < Zb.Cib; < Cr and therefore

Cr = Zb;Cib; = Zbilabi
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sinee when 7 # j then bi(f;.-b?- S B; ~ B; = 0and b,‘C;.-bf' b;‘(,jj‘-b ;= 0. If b‘CLb‘ =L
0, it is an invariant subalgebra of (i and, since the latter is simple, we -have
bi(b: = C for this value of ¢ and all other b,Cib; equal 0, and therefsre €, =
b.Ab; = B, The second part of the theorem is therefore proved.

10.12 We shall now prove part (iii} of Theorem 5 in two stages.

Lemma 8. If D is a division algebra and M the matric algebra (cy; 2, j = 1, 2,

c,mY,and if DX M = DM, then DM s simple.

Let B be a proper invariant subalgebra of 4 = DM. If z is an element of B,
then there exists an element y of A such that xy = 0, since otherwige e should
have B > z4 = A, in other words, every element of 5 is smgnku\ in A and
hence B ~D = 0. But

\.

v =Zdiey, dy<D )

<

and d;; = 2 epwe;p and is therefore contained ip Bma\.s well as in f). Since

P \
B D =10,everyd;; = 0,thatis,z = 030 t-hat'B\x_f 0. I follows immedistely
from Lemma 2 that a simple algebra always hagdhe form ) X M, and also that
Do esidess, www.dbl‘aulibral‘y,éfg,in
LeEMMA 9. In a simple algebra all pi'ipa;é}i'i?e idempolent elements are similar,

Let ¢ and a be primitive idempotgrii elements of a simple algebra A.  We can
then find a matric algebra M = fey,) for which ey, = eand such that A = D X M,
where D s a division algebras\\If ea = 0 = e, we can at the same time choose
€91 = @;and ez = uenu—l‘({\ere

="l —en — e + e + ey = u7,

\ '\ 4
so that the lemmajs’true in this case, and we may therefore assume that, say,
ea # 0. \M

Suppose u&fhat eae 7 0, Since A = D X M, we can express @ in the form
Zaygei; ({1\,) <D}, where ay; # 0since eae = ane;,. We have then
<\; - (ea)? = (ena)® = {anen + apers + -+ )2 = apena

and hence b = o7 ;ea is idempotent. We then have

¢h=b, be=-¢  ba=b;

¥

also ab = aba = abab and, since a is primitive, either aba = « or aba = 0; but

eabe = eae # 0,
hence ab == 2. Wethen have

b = weu™!, H

i

=1—-b 4 e ul=14+5b — e
b = v lap, v =1—-5b-+4aqa, vt =14+ 6 — a

and hence ¢ and e are similar in this case also.
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If eae = 0 bl-lt aed # 0, interchanging the r8les of ¢ and a leads to results
similar to those just obtained; we can therefore assume eae = 0 = qeq. If

u=1+e¢—¢ea+ae=22~c¢4ea— ae),

then #au~ = a — ae; we can therefore assume g¢ ~ 0. If
v=(l4e— 2a) =22 — ¢+ 2ea),

then vav™ = a — ea; we can therefore also assume ea = 0, which brings us back
to the first case which we considered. The lemma is therefore proved.

Part (iii) of the theorem follows immediately. For, if ¢ and @ are primitive
idempotent elements of M, and M, respectively, we can now find w such’ that
a = wew*; but D o ede and Dy~ gda = wedew!, which is simﬂg:{t})“te\de and
therefore to D, \

P |

10.13 Semi-invariant subalgebras, If B isa subalgebra of eddWhich is such that
AB < B (B4 < B),it is called a right (left) semi-inyafiant subalgebra. We
shall treat only the ease in which 4 is semi-simple; it hasthen an identity and if
we restrict ourselves, as we shall, to the case of right gemi-invariant subalgebras,
we may assume AB = B, )

It is clear that, if 4 = A, @‘“ﬁiz\;-ihenu@i]héa&.wgﬂn$ B,, where 4;B; =
By A:B; =0(: = 4). Itissufficient then atfirss to consider only simple algebras,
and in this case we have the added cox;diﬁdn that ABA = A; that is, we have
simultaneously N\

(18) AB LB, 4BA = 4.

1f we call B minimal when itécbntains no other semi-invariant subalgebra, we
have .

Lesymaa 10, A min ma\l right semi-invariant subalgebra of a simple algebra A has
the form A, wherews a primitive idempotent element of A. Conversely, if u* =
is primitive, Awds @ minimal right semi-tnvariont subalgebra.

Let AC,23C;if ¢, = 0 is any element of €, and €y = Aay < C, then AC, =
(.. B Mp’ci's’e C, < (; then in the same way if ¢2 is any element of Cy, we ha.ve
C: = A% < €. If Cz < C,, we may continue this process and after & finite
number of steps we shall arrive at an algebra B > 0 such that A% = B for every
element b of B which isnot 0. Sinee A is simple, 464 = 4 and B = B, so that
B contains a primitive idempotent element % and Au = B. If u is not also
primitive in A, let & = wy + g, sty = 0 # ), uh = ug ;-6 0. Then wu = %
so0 that u, is in B; hence u must be primitive in 4, if it is soin B.

Since B = Aw, every z in B has the form qu and hence 2w = z.
Az and, from the manner in which B was chosen, either Bz = 0 or Bx

If Bx = 0, thenuz = 0 and therefore

Butalso B =
= B.

7% = zu-zu = O
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Also, if z is nilpotent, then 22 = 0 = ux; for uAu = uBu is simple since, by the
proof of Lemma 4, it is a division algebra, and ur = uru < uBu. If By = B,
then there is a unique b such that bxr = z and, since b is then idempotent, we
have uzr = z, thatis, z liesin udu. If B = Au, then AB = A% < Bsothat B
is a right semi-invariant subalgebra of 4. If C is minimal, then B = ( gz
desired.

Conversely, let B = Aw, u primitive; then the only idempotent quantity of B
has been shown above to be u and, if B were not primitive, we should have
B > (' = Ay, v primitive, which iz impossible. )

Suppose now that B is not minimal and let ¢;, ¢5, -+ , €, be a comp]ete\ et of
primitive supplementary idempotent elements in B. Then B, = A€+ der +-
«++ 4 Ae, is semi-invariant in 4. Let b be an element of B whieli’is not in
B,; since b =% Zbe,, we may replace b by b — Zbe; and so assurrlp,,g\?ér}' be; = 0in
which case clearly Ab ~ B, = 0. But, if b # 0, then Ab contains an idempotent

elementesnchthatee =00 =1,2,---, r)and e,y = ¢ .-‘SE}.',-(? is an idempotent
element supplementary to the given complete set, which is impossible. We
therefore have the following theorem. AN

L&

TreorEM 6. If A is simple and AB = B is g gemi-invariant subalgebra, then
www.d bl'aulibral'y.qng_i'n

B = Ae +A3%:"_‘}_:"... + Ae,

whereey, ez, -+, €, 13 a complete supplérﬁeﬁtary set of primitive idempotent elemenis
of B; and these idempotent elements\ @re also primitive tn A,

We shall assume that A i@ml}-simple, say

- (19) S A=8® @8,
when each S;is simp[lé ;a.;:xd
(20) O S: = Di X M.,
As previogs&icf. Lemma 2) we may set M, = (es),pvg=1,2, -, ny, where

€ forsi« 4 set of supplementary primitive idempotent elements and Z ey, = L.
T, B

If B is any invariant subalgebra, then B = 2 Bej, and Be!  is a right semi-

3 - - - - . ‘-' p
lnvariant subalgebra; if B is minimal, we have already seen that it has the form
Bu where % 18 a primitive idempotent element, and therefore we have B =
Be;, = Si,, forsome iand p. If set B,, = Sie; , then

Bt'pe;;q = S;B;FB;Q = MiDie;q = S‘-S;q = Biq-

We have therefore the f ollowing theorem.

TarorEM 7. If 4 s semi-simple and is given by (19), and f e, form a complete
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set of supplementary primitive idempolent elements such that ) e, = u; is the
Pp = t

identity of Sy, then every minimal right semi-invariant subalgeb?rz lhas the form

(21) "P = Sl'epp
Moreover, there is a number e}_in S; such that

(22) B‘PGPQ = Bi?'

10.14 The representation of a semi-simple algebra. Let A be a linear as
sociative algebra over F with the identity 1, and designate elements of 4 by .
A representation of A is & set, U{a), of matrices of order n such that ag>'U(a)
is a correspondence between the elements of 4 and the matrices of the set in
which the following conditions are satisfied A

(23) U@ =1, U+d=U@+U0), Ulb)&Te Ud),
U(aa) = ali(g) V

for every a and b of 4 and every scalar ain F. AV

We can now, as in chapter I, associate with the m@ﬂ'lces U/{a) a vector space
with a given funda,mental basm, apd. > fhan Qf baSIS corresponds to replacing
U(a) by PU(a)P~, an equivalent representatwn YT 188, A subspace R of R
is invariant under Aef. 5.16) if every ma:trix U'{a) carries each vector of R;
into a vector of Ry, If By 5 0, we maghsét R = Ry + Ry (B, ~ B2 = 0); and
since we are only interested in the equivalence of representations, we may
suppese the basis X so chosen thai’.\

Urla) Us(l‘l)

\
@) U (\ ¢ Usla)

The representation is g2 1d to be reducible in this case, and it is evident that both

Ui(e) and Us(a) give representations of A.
If R has no proper invariant subspace, then U(4) and R are said to be 4rre-

ducible. It igmow clear that we may write
"
<\" R=R 4R+ - +E
where B, = Ry + --- + R, is the invariant subspace of least order which con-
tains B,_;, (Ro = 0), and in this case

Unla') Um(a) Ula(ﬂr)
0 Unla) -+ Usla)

(25) Ula) =
0 0 L Uaa(ﬂ')
, U a) are irreducible. If in addition Ra,

and the representations Ui(a), =12
= Ly &y

, B, are themselves invariant for some {, then Ui(a) = 0 (@ # 731
, ), and we say that U(a) is decomposable.
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A particular case of fundamental importance arises when we take /£ to be 4
itself, that is, if z is a variable element of A, then =’ = ax corresponds to a linear
transformation in the basis of F (or 4), say

= ar = Ula)(x),

and U{a) has the property given in (23) and so is a representation of 4. 1tis
obviously the representation of (6) and is one-to-one; it is called the regular
representation,

The invariant subspaces of A are evideutly its right semi-invariaqt sub-

algebras B, If ey, eq, -« - , €,i8 a basis of B and
(26) ae; = Zapg;, ) \' \\
then the matrices U(a) = || ai; || give a representation of 4 Qn}j:-iie subspace B.

Suppose now that V{a} is a given representation, R the coﬁeépohding subspace,
and B a right semi-invariant subalgebra of A. Ify is ani\\\!ector of ££, then the
get of vectors of the form V{b)(y) is an invariant subspaed of R, since

) V@) = Viab) = V(o) Db < B

From (27) it is seen immediately that the seb\B’ of elements »’ in B for which
V{b)y = 0 forms a ﬂg‘ﬁ?"gé%sfﬁl*}fgjﬁ?: '?gl%glgebra of B and henee, if B is
minimal, either B’ = 0 or B’ =B. H\B' = 0, then V(e)y, ---, VieJyis s
basis of the set (V{b)y) and N

V(@V(e)d'S Viae)y = Za;iV(e))y.

But then the vectors of thedorm V(b)y give a representation of 4 equivalent to
that determined by B in((26).

We shall now prove :{h’é following theorem.
I
TrEOREM SQ?\L’w regular representation of an algebra is decomposable, then

every represendaiion 18 decomposable and ifs irreducible components are coniained
in the regusag"«representatian.

SU{{%;QSE that the regular representation of A4 is decomposable; then 4 =
B, +. 2 + -+ + B,, where the B; are irreducible equivalent subspaces of 4,
that is, minima) semi-invariant subalgebras such that B; ~ By = 0 for j = k.

Let 31, ¥3, ** -, Yo be a basis of the space R of a representation of A. Since A
has an identity, we have

(28) B =AR = BR + BR 4 --- + B.R
=By + B+ - + By + -+ + By

As we have seen above, if Byy; # 0, it is a subspace of R which gives a representa-

Pion equivalent to that given by B,; it follows that either Bwy; = 0 oritisan
invariant subspace of R.

The intersection of the invariant subspaces is also invariant so that either
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Byy; ~ Boya = 00T Biy; = Bpy,; hence we may select from the spaces Biy, in

(28) a set of independent irreducible invariant subspaces determining R This

proves Theorem 8. '
Consider now a semi-simple algebra

A=5 05,
where S, is a simple algebra. We may write

1 = Zuy; G=1-,ri=1--,n)
where the u;; form a complete set of supplementary primitive idempotent ele-
ments of A. Then

O\
-

where Bi; = Au;;is a minimal right invariant subalgebra of 4.4 We have then
decomposed A into irreducible invariant subspaces and havezproved the first
part of the following theorem. "‘\

A= EA‘!‘L.'; = EB;,-

TrgoreM 9. The regular representation of @ semi—sjm}}te‘algebm 1s decomposable,
and its reducible components are thosé obtained by tfte}w? of the B.; as representation
spaces. 'The represeniations given b ik BY;, Bu are equivalent while B,
Bpu, give inequivalent represemi;ioﬁrs“f%gﬁ}q ﬁg{gmry'wa'm

For by Theorem 7 we have Bijej: =B g0 that the proof of Theorem 7 with
y = ¢}, shows that the representatiofiby By is equivalent to that by By In
the representation by Bi; we ha.ve{"

g i” 3 n
\ \\e; == 2 Uy — 1.‘5,

i=1

. \ p 3 3 -
where 1,, is an identity matrix corresponding to the identity transformation on
B, since ¢; is thg"principal unit of B;; But in the representation by Bu, we
have e; — 0. CEvidently these representations cannot be similar.

N,

10.15 o&i‘i}.\ui) algebras, If ® = (1 = 1,4 " > gm) 18 8 finite group, tl?e
group relation g.g; = g i & particular case of the associative product deﬁx}ed. in
(2) and, when it is used in conjunction with addition, we get ap associative
algebra G of which (g1, ¢, = *° » gm) i8 & basis and ¢, the identity.

The representation of & as a regular permutation group
g o o g,,,)
i = (gslga ot Gim
corresponds to the representation of G as a set of matrices,

b = E Bipp (gg» = Gs0)-

r=1

the matrix h; being
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Since i, = p, that is, §:g» = gy, only when g; is the identity, the matrix A; has no
coordinate in the main diagonal except for { = 1 in which case %, is the identity
matrix; hence

(29) tr(hy) = m,  tr(h) =0 (i # 1),

It follows from this that ¢ is semi-simple. For if ¥ = Zxn;k; is the matrix cor-
responding to some element of the radical N, then tr{x) = 0 since « is nilpotent,.
If u = 0, some coordinate, say #,, is not 0 and in A3y, which also corresponds to
some element of N, the coefficient of &, is not 0; we may therefore assumew; # 0
provided N # 0, But using (18) we get A o
oA\

0 = tr(u) = Igtr(h) = mmn; N N

\l

hence the assumption that « # 0 leads to a contradiction anti'i‘heri fore & = 0,
that is, ( is semi-simple. This gives the following thcurvm\

THEOREM 10. A group aigevra is semi-simple. 1t is jherefore the direst sum of
sumple algebras and, if the field of the coefficients is Qﬁcienﬂy extended, it is the
direct sum of simple matric algebras. \

X
‘,0

The whole of the representatign theqry %eggg_)ged in the previous section can
now be applied to groups. .
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NOTES:

CrapTER 1

The calculus of matrices wad firat used in 1853 by Hamiiton (1, p. 550K, 480f) under the
name of ““Linear and vector functions.” Cayley used the term matriz in 1854, but merely
for a scheme of coefficients, and not in connection with a csleulus. In 1858 (2) he devei&ed
the basic notions of the algebra of matrices without recognizing the relation of bis work to
that of Hamilton; in some cases (e.g., the theory of the characteristic equaticel)Cayley
gave merely a verification, wheress Hamilton had already used methods in;fl}ree and four
dimensgions which extend immediately to any number of dimensiongs.,}The algebra of
matrices was rediscovered by Laguerre (8) in 1867; and by Frobenius (18) in’1878.

"
1.03 Matric units seem to have heen first used by B. Peirce (1'?')“;:}43(: also Grassmenn 5,
§a51).
/ \/
1,10 For the history of the notion of rank and nullitx\é\eé Muir, Theory of Delerminants,

Lendorn 1906-1930; the most important papsr é\g_(kﬂg :%%ﬁ-igﬁ §2§10g{ o

CrarTER 1L~
20103 The principle of substitution giveg~ii):§‘2.01 was understood by moat of the garly
writers, but was first clear)y stated by Frebettius, who was also the first to use the division

transformation freely (20, p. 2033,

204 The remainder theorsm is implicit in Hamilton's preof of the characteristic equstion;
see alao Frobenius {280}, L\ -

N\

2.05-12 The characteristit‘:’éqﬁmion was proved by general methods for n = 3, 4 by Hamil-
ton (1, p. 567; 8, p. 484TNCT. also 4, 6). The first general statement was given by Cayley
(2); the first general Prpof by Frobenius (18). See also the work of Frobenius cited below
and 9, 10, 39, 41, 50, 89, o _ _

Hamilten, Qg’%ﬂv and other writers were aware that a matrix might satisfy an equatlon
of lower degréeithan n, but the theory of the reduced equation seems to he due entirely to
Frobeniys {18, 140). . '

The€heéory of invariant vectars was foreshadowed by Hamilton, but the general case wag
first handled by Grassmann {5}.

210 See Sylvester (42, 44) and Taber (96); see also 252.

2,13 The squsre roof of & matrix was considered by Cayley (3, 12), Frobenius {139) and

many others,
Craprer 111

- H 1 n
3.01 The iden of an elementary transformation seems to be due in the main to Grassman

(5).

. ise indicated.
' I these Notes, numbers refer to the Bibliography unless ctherwise indicate
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3.02-07 'The theory of pairs of bilinear forms, which is equivalent to that of lincar poly-
nomials, was first given in satisfactory form by Weigrst-russ (see }Iuth, 173) although the
importance of some of the invariants had heen prevx_ously recognized by Svlvester. The
theory in its matrix form is principally due to Frobenius (.18’ 20): _

The theory of matrices with integral elements was first investigated hy Sn.uth (_see Muth,
173) but was first given in satisfactory form by Frobenius (20). The form given in the fext
is essentially that of Kronecker (92},

3.04 The proof of Theorem 3 Is & slight modification of that of Frobenius (20},

3.08 Invariant vectors were discussed by Hamilton (1, 8) and other writers on quaternions
and vector analysis, The earliest satisfactory account seems to be that of Grassmann {53,

CuarTER IV ,'\:\
The developments of this chapter are, in the main, & translation of. I{i‘bnecker’a work
(see Muth, 175, p. 93ff). See slso de Séguier (259). N
CuarTER V y \

5.08 From the point of view of matrix theory, the principgl feferences are Schur {198},
Rados (105, 106), Stephancs (185), and Hurwitz (117). See‘Duéwy (284, p. 138) for addi-
tional references; also Muir, Theory of Determinants, Lo‘ndQ'IQOfi—IQSU‘

5.08 Non-commutative determinants were firat cansidered by Cayley (Phil. Mag. 26
(1845), 141-145); see also Joly (190 i dihivesyepags

5.10-11 See Loewy (284, p. 149); also 176, 178,485, 198.
5.12 The principal references are Schus (iQB) and Weyl (440, chap. 5).

Ke ,\ CharreR VI

For general references see L(}e@?,;'@s‘i, pp. 118-137), also Muth (175), Hilton (314, chap.
6, 8) and Muir, Theory of Dewhminants, London 1006-1930,

6.01 The method of Rro{{i;)g that the roots are real is essentially that of Tait (10, chap. 5);
see also 36, 60, 228, 3@3\

6.03 See Loew.y%ﬂ“‘l, pp. 130-137), Baker (215) and Frobenius (202). See also 7, 18, 99,
113, 114, 115,124, 135, 139, 210, 221, 273, 302, 307, 320, 371, 400, 414, 456, 476,
A

6.04 S%“D’i;:kaon (302).
6.05 See Loewy (284, pp. 128-135).
6.07 For references see Muth (175, p. 125) and Frobenius (139},

CuarTER VII

710-02 Bee Cayley (2), Frobenius (18), Bucheim (59), Taber (98, 112), and Hilton (314,
chap. 5); sleo 83, 86, 98, 137, 184, 107, 200, 223, 242, 250, 264, 301, 382,

7.03 8ee Frobenius (280).

705 See Frobenius {140); also 350.

7.05-07 See Sylvester (42, 44) and Taber (96); see also 252,
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CaaprEr VIII
8.01-03 See Sylvester (36), Bucheirm (59, 69); also 134, 371,
8.02,07 Sec Hamilton (l,’p. 545ff; 8, §316), Grassmann (5, §454), Laguerre (8). Many
writers define the exponential and trigonometric funetions and consider the questio;‘l o‘f (:fmh

vergence, 8.g., 79, 80, 103, 389, 449; also in connection with differential equations, 13, 153
258. y 40y Lad,

8.04-05 Roots of 0and 1 have been considered by alarge number of writers; see partic-
ularly the suite of papers by Sylvester in 1882-84; also 18, 67, 76, 107, 242, 255, 264, 277, 270
381, 411, 430, 474, 539, , 277, 279,
_ N\
8.08 See 20, 94, 246, 256, 257, 274, 303, 338, 399.
AN
8.00-11 The absolute value of 2 matrix wag first considered by Peano {75 h h somevwhat
different form from that given here; see alse 273, 348, 389, 472, 473, 404. . For'infinite prod-
uets see 133, 324, 326, 389, 494, ™
z {.'
8.12 [uaddition ta the references already given above, see 10, 16,'“13’, 187, 418, 419, and also
many writers on differential equations. v

CuartER IX 'y \\;

The problem of the automorphic transformation in ma}bﬁ-}ées was first considered by Cay-
ley (3, 7) who, following a method md:%}&q;%ﬁﬁ%ﬂ%%%%tion for symmetric and
skew matrices; his solution was put in simpler farm’by Frobeitius (18), Cayley failed to
impose necesyary conditions in the general ease™which was first solved by Voss {85, 108, 162,
163). The properties of the principal elements were given by Taber (125, 134; see also 127,
149, 136, 158, 231).  Other references will be found in Toewy (284, pp. 136-137); see also 9, 19,
163, 154, 161, 167, 168, 169, 187, 229, 371"

o\
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